# The introduction of risk-based assessment for management of ESBL-E patients in acute care

Julianne Munro
CNS Infection Prevention & Control
Canterbury District Health Board
New Zealand

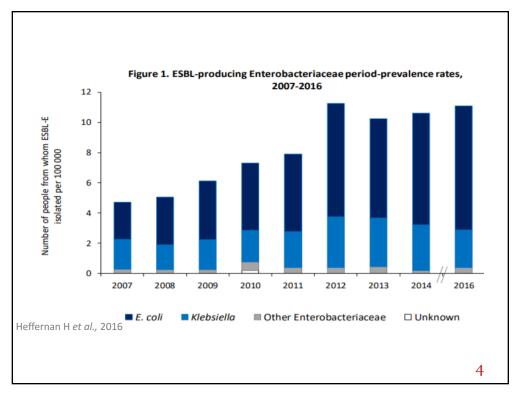
Hosted by Jane Barnett jane@webbertraining.com

**Canterbury** 

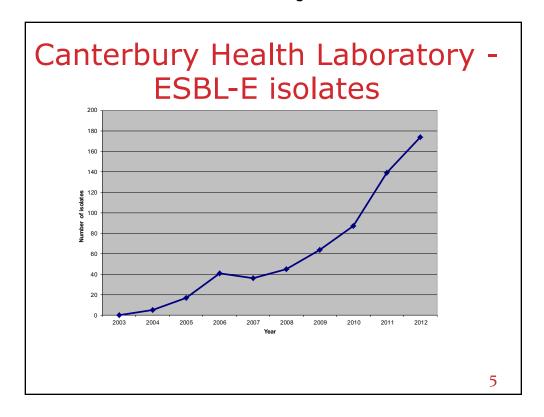
District Health Board
Te Poari Hauora ō Waitaha

www.webbertraining.com

February 13, 2019


#### Objectives of presentation

- Describe the journey taken to develop and introduce an ESBL-E risk-based assessment, placement and management policy
- Review the impact of Contact Precautions on patients
- Explore supporting literature
- Discuss the use of a visual tool
- Evaluate the success of the risk-based assessment policy


### Objectives of change in policy

- improve the patient journey in our care
- improve bed flow in clinical areas
- assist staff in making risk-based decisions





Hosted by Jane Barnett jane@webbertraining.com www.webbertraining.com



# Canterbury District Health Board (CDHB)

- 1500 inpatients
- 13 hospitals sites
- Buildings older in design
  - 4-6 multi-bed rooms
  - few single rooms
  - limited toilets and bathrooms
  - dirty utility rooms
    - location
    - design



"The kid you've been yelling at to get out of the bathroom for the last ten minutes is at the end of the queue!"

6

#### Pre 2010

MDRO policy requires
Contact Precautions: single room, dedicated bathroom facilities and patient mobility restrictions

7

#### My journey in risk-based practice



- began 2006
- Noted the impact on
  - elderly patients
  - family/visitors
  - staff

8

#### **Contact Precautions**

- Negative psychological effects
  - Anxiety, stress & depression
- Delays in Rx, in transfer
- Less pt/HCW contact
- More adverse events
- Decrease pt care satisfaction
- Rehabilitation disruption



9

### Supported in literature



- Pike et al., 2002, Saint et al., 2003
- Morgan et al., 2009, Abad et al, 2010, Barratt et al, 2011, Birgand et al., 2014.

10

# MDRO guidelines, Ministry of Health, New Zealand, 2007



- 4.1 Response appropriate to risk
  - management can be assessed
  - adjusted using a risk- based approach

11

12

#### Appendix 2 -Risk-based matrix

- Patient
- Epidemiology
- Staff

- MDRO
- Institution/environment

| Factor              |                                                                     | Estimated size of risk             | Suggested controls                                                                                  |
|---------------------|---------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------|
| Patient (with MDRO) |                                                                     | $\overline{}$                      |                                                                                                     |
| 1.                  | Longer stay: more sick and more opportunity for transmission events | <b>1</b>                           | Isolate patient and discharge as soon as possible                                                   |
| 2.                  | Understands and is compliant with IC recommendations                | ↓↓                                 | Patient is provided with information, and then becomes advocate for good infection control practice |
| 3.                  | Unable or unwilling to comply with IC recommendations               | $\uparrow\uparrow\uparrow\uparrow$ | It may be necessary to limit patient movement around the hospital or health care facility           |
| 4.                  | Incontinent of faeces                                               | ↑↑↑                                | Correct medical or surgical conditions as possible                                                  |
| 5.                  | Uncovered wounds                                                    | ↑↑                                 | Implement staff training                                                                            |
| 6.                  | Urinary catheter                                                    | 1                                  | Implement training of staff on emptying catheter bags; provide well designed sluices and sanitisers |
| 7.                  | Mobile: consider along with other factors listed above              | $\uparrow\uparrow$                 | It may be necessary to limit patient movement around hospital or health care facility               |

#### **Modified Precautions - 2008**

- Under the radar
- Individual plans
  - Multi disciplinary team
  - written in pt notes
- Nerve wracking
- Pre:
  - 5 Moments of Hand Hygiene
  - Infection Prevention consideration in design features
  - supporting literature such as Sztajzel *et al.*, 2013



13

#### Strama risk stratification

ESBL resistance in enteric bacteria

PROPOSED ACTION PLAN - NOVEMBER 2007



### Not all ESBL positive patients require isolation

- . No risks
- 2. Medium risk Other risk factors
- 3. High risk Diarrhoea or urinary/faecal incontinence



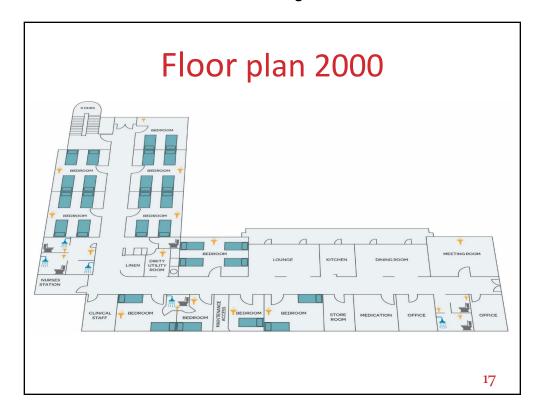
14

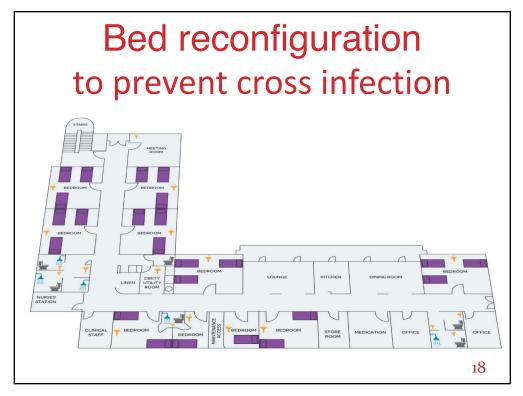
#### On the radar - 2010



#### 2010

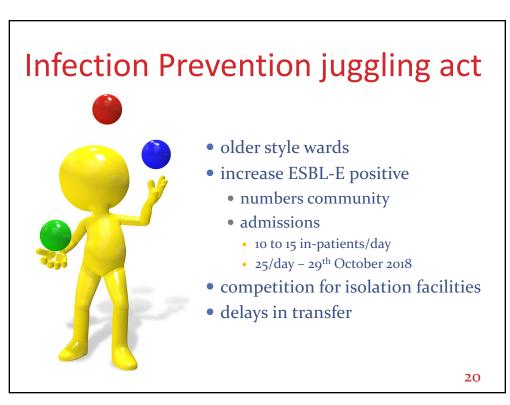
Modified Contact
Precautions for ESBL-E
introduced in 7 AT&R wards
enabling increased mobility
and access to rehabilitation


15


#### Christchurch Earthquake - 2011

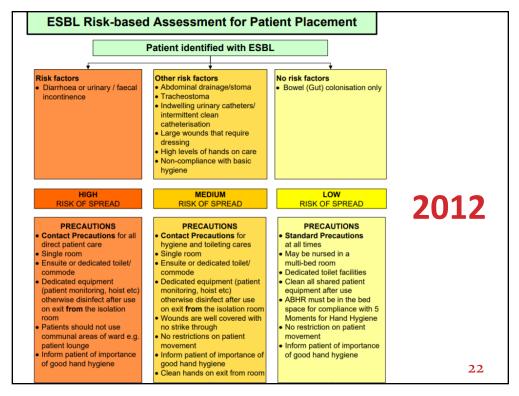
- 3 acute admitting medical wards relocated
- Hospital opened 1959
  - wards closed to inpatients
  - poor design features for effective IPC
- Mental Health Service
- Older Persons Health Service




Hosted by Jane Barnett jane@webbertraining.com www.webbertraining.com






Hosted by Jane Barnett jane@webbertraining.com www.webbertraining.com





Hosted by Jane Barnett jane@webbertraining.com www.webbertraining.com

#### Issues became our opportunity • Development of risk categories • MDRO guidelines, MOH, 2007 • Strama, 2007 • Modified precautions used in AT&R wards **Risk Category** Risk factors High Risk Diarrhoea, urinary or faecal incontinence Medium Risk Abdominal drainage/stoma Indwelling urinary catheters/intermittent clean catheterisation Large wounds that need dressing Non-compliance with basic hygiene High dependency for cares Low Risk None of the above risk factors - bowel colonisation 21



Hosted by Jane Barnett jane@webbertraining.com www.webbertraining.com

### Disposal of body fluids



Poor design

23

### High Risk Activity

#### DISPOSAL OF BODY FLUIDS IN A DIRTY UTILITY ROOM IS A HIGH RISK ACTIVITY

- . Ensure apron and gloves are worn when disposing of infectious waste in dirty utility room
- . Dispose of body fluid into sluice, taking care not to cause splashing
- If possible, place the waste receptacle into the sanitiser immediately
- Clean and disinfect sluice bench and sanitiser handle with chlorine-based disinfectant after disposing of body fluid regardless of whether any spillage occurs
- Remove and dispose of apron and gloves in dirty utility room, then perform hand hygiene using either ABHR or the antimicrobial (green) liquid soap

24

#### **Trial & Rollout**

- Trial in three clinical areas
  - an acute medical admitting unit
  - a general medical ward
  - 7 AT&R wards

#### 2012

MDRO policy revised to include ESBL-E risk-based patient placement and associated IPC measures. Visual tool developed

25

### **Embedding into practice**



- poster
  - clinical areas
  - intranet
- education sessions
- actively promoted
  - IPC Link reps
  - newsletter
- advice
  - telephone
  - ward rounds
  - clinical notes

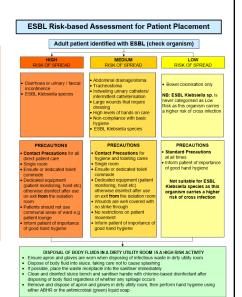
26

### Visual communication resources

- quick visual reference
  - clarity of pt management
- information
  - simplified
  - make sense
- illustrate & reinforce written policy
- improve compliance

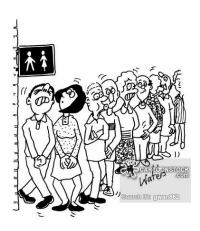


Ref: Drews *et al.*, 2014, Visual Communication Resources <a href="https://www.cdc.gov/healthliteracy/developmaterials/visual-communication.html">https://www.cdc.gov/healthliteracy/developmaterials/visual-communication.html</a>


27

28

#### 2016


Further MDRO policy revision to differentiate between ESBL E.coli and Klebsiella pneumoniae for patient placement and precautions

Ref: Cholley et al, 2013; Skally et al, 2014; Calbo et al, 2015, Freeman et al, 2014



#### Literature – transmission risks

- faecal or urinary contaminated equipment or environment
- healthcare worker hands
  - Tacconelli et al., 2014
- incontinence
- invasive devices
- high hands-on-care
  - Hilty *et al.*, 2012, Cholley *et al.*, 2013, Meier *et al.*, 2011

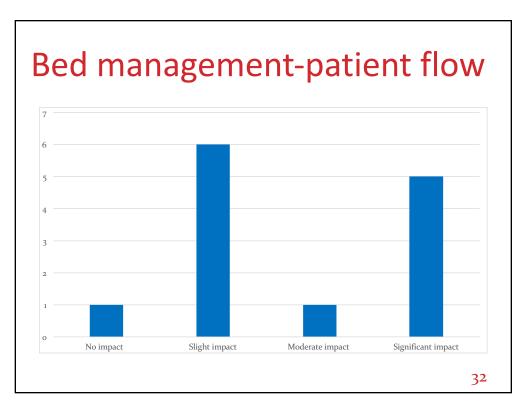


29

#### Results



- no evidence of
  - increase in HAI ESBL-E cases
  - cross infection, or outbreaks with ESBL-E
- not enough data to publish

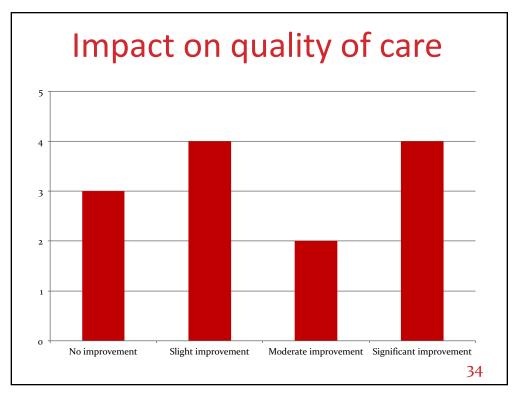

30

#### Literature - acute care hospitals

#### ESBL - E.coli rates

- 2 hospitals over 5 years
  - standard versus contact precautions
  - no significant difference
    - Zahar et al., 2015
- Removed contact precautions
  - no change transmission rates
  - high levels compliance with standard precautions
    - Tschudin-Sutter et al., 2012

31




#### Literature - outcomes

- MDRO status delay transfer from ED - 2 1/2 hours
  - Gilligan *et al.*, 2010
  - McLemore *et al.*, 2011



- Modified precautions in ED
  - improve transfer time
  - no changes nosocomial rates
    - Kotkowski et al 2017
- Risk based precautions for trauma patients
  - isolation days halved
  - no increase in HAI MDRO infections
    - Watkins , et al., 2014



Hosted by Jane Barnett jane@webbertraining.com www.webbertraining.com

### From the patient's perspective

- No patient satisfaction feedback
  - pts unaware streamed into low risk
- low and medium risk categories not isolated
  - No adverse isolation risks



35

#### The IPC team perspective

- Reduction in:
  - single room requirements
    - 5 rooms/day low risk
  - full contact precautions
    - Up & about medium risk
- High-risk
  - continence issues remain



36



#### **Conclusions**

- The increase in antimicrobial resistant organisms is a challenge for infection prevention and control teams worldwide
  - Cole, 2016
  - WHO | Global action plan on antimicrobial resistance, 2017
- Implementing a risk assessment for the placement and care of ESBL-E patients
  - positive outcome for patients, families, staff and bed managers
  - while mitigating the risk of transmission of antimicrobial resistance

38

#### Acknowledgements

- Ruth Barratt
  - RN, BSc, MAdvPrac (Hons)
  - PhD Candidate and Research Assistant
  - University of Sydney
- CNS Infection Prevention & Control team, CDHB

39

#### References ...

- Abad, C., Fearday, A. and Safdar, N. (2010) 'Adverse effects of isolation in hospitalised patients: a systematic review', Journal of Hospital Infection, 76(2), pp. 97–102. doi: 10.1016/j.jhin.2010.04.027.
- Barratt, R. L. R. L. R. L., Shaban, R. and Moyle, W. (2011) 'Patient experience of source isolation: Lessons for clinical practice', *Contemporary Nurse*, 39(2), pp. 180–193. doi: 10.5172/conu.2011.180.
- Birgand, G. et al. (2014) 'Prolonged Hospital Stay, an Adverse Effect of Strict National Policy for Controlling the Spread of Highly Resistant Microorganisms', Infection Control & Hospital Epidemiology. 35(11), pp. 1427–1429. doi: 10.1086/678425.
- Calbo, E. and Garau, J. (2015) 'The changing epidemiology of hospital outbreaks due to ESBL-producing Klebsiella pneumoniae: the CTX-M-15 type consolidation', *Future Microbiology*. 10(6), pp. 1063–1075. doi: 10.2217/fmb.15.22.
- Cholley, P. et al. (2013) 'Hospital cross-transmission of extended-spectrum β-lactamase producing Escherichia coli and Klebsiella pneumoniae', Médecine et Maladies Infectieuses, 43(8), pp. 331–336. doi: 10.1016/j.medmal.2013.06.001.
- Cohen, C. C., Cohen, B. and Shang, J. (2015) 'Effectiveness of contact precautions against multidrug-resistant organism transmission in acute care: a systematic review of the literature', *Journal of Hospital Infection*, 90(4), pp. 275–284. doi: 10.1016/j.jhin.2015.05.003.
- Cole, J. (2016) 'Antimicrobial resistance a "rising tide" of national (and international) risk', Journal of Hospital Infection, 92(1), pp. 3–4. doi: 10.1016/j.jhin.2015.10.005

40

#### References cont.

- Drews, F. A. and Doig, A. (2014) 'Evaluation of a Configural Vital Signs Display for Intensive Care Unit Nurses', *Human Factors: The Journal of the Human Factors and Ergonomics Society*, 56(3), pp. 569–580. doi: 10.1177/0018720813499367.
- ESBL resistance in enteric bacteria. Proposed action plan. (2008). STRAMA, 2008. Available at: http://soapimg.icecube.snowfall.se/strama/Strama ESBL eng.pdf (Accessed: 31 October 2017).
- Freeman, J. T. et al. (2014) 'Predictors of hospital surface contamination with Extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae: patient and organism factors', Antimicrobial Resistance and Infection Control, 3(1), p. 5. doi: 10.1186/2047-2994-3-5.
- Gilligan, P. *et al.* (2010) 'Impact of admission screening for meticillin-resistant Staphylococcus aureus on the length of stay in an emergency department', *Journal of Hospital Infection*, 75(2), pp. 99–102. doi: 10.1016/j.jhin.2010.01.019.
- Heffernan H et al (2016) Survey of extended-spectrum beta-lactamase-producing Enterobacteriaceae July 2018 Antimicrobial Reference Laboratory and Health Group, Institute of Environmental Science and Research Limited (ESR)
- Hilty, M. et al. (2012) 'Transmission Dynamics of Extended-Spectrum β-lactamase– Producing Enterobacteriaceae in the Tertiary Care Hospital and the Household Setting', Clinical Infectious Diseases, 55(7), pp. 967–975. doi: 10.1093/cid/cis581.
- Kotkowski, K. et al. (2017) 'Association of hospital contact precaution policies with emergency department admission time', Journal of Hospital Infection, 96(3), pp. 244– 249. doi: 10.1016/j.jhin.2017.03.023.

41

#### References cont.

- McLemore, A., Bearman, G. and Edmond, M. B. (2011) 'Effect of Contact Precautions on Wait Time from Emergency Room Disposition to Inpatient Admission', *Infection Control & Hospital Epidemiology*, 32(3), pp. 298–299. doi: 10.1086/658913.
- Meier, S. et al. (2011) 'Extended-spectrum β-lactamase-producing Gram-negative pathogens in community-acquired urinary tract infections: an increasing challenge for antimicrobial therapy', *Infection*, 39(4), pp. 333–340. doi: 10.1007/s15010-011-0132-6.
- Ministry of Health (2007) Guidelines for the Control of Multidrug-resistant Organisms in New Zealand. Available at: http://apps.who.int/medicinedocs/documents/si8622en/si8622en.pdf (Accessed: 31 October 2017).
- Morgan, D. J. et al. (2009) 'Adverse outcomes associated with contact precautions: A review of the literature', American Journal of Infection Control, 37(2), pp. 85–93. doi: 10.1016/j.ajic.2008.04.257.
- Pike, J. H. and McLean, D. (2002) 'Ethical concerns in isolating patients with methicillin-resistant Staphylococcus aureus on the rehabilitation ward: A case report', *Archives of Physical Medicine and Rehabilitation*, 83(7), pp. 1028–1030. doi: 10.1053/apmr.2002.33108.
- Rogers, B. A. et al. (2014) 'Predictors of use of infection control precautions for multiresistant gram-negative bacilli in Australian hospitals: Analysis of a national survey', American Journal of Infection Control, 42(9), pp. 963–969. doi: 10.1016/j.ajic.2014.05.035.
- Saint, S. *et al.* (2003) 'Do physicians examine patients in contact isolation less frequently? A brief report', *American Journal of Infection Control*, 31(6), pp. 354–356. doi: 10.1016/S0196-6553(02)48250-8.

#### References cont.

- Skally, M. et al. (2014) 'What may be lurking in the hospital undergrowth? Inapparent cross-transmission of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae', *Journal of Hospital Infection*, 88(3), pp. 156–161. doi: 10.1016/j.jhin.2014.07.011.
- Sztajzel, J., Pittet, D. and Huttner, B. (2013) 'P071: When rehabilitation and reeducation rhyme with infection and prevention', Antimicrobial Resistance and Infection Control, 2(S1), p. P71. doi: 10.1186/2047-2994-2-S1-P71.
- Tacconelli, E. *et al.* (2014) 'ESCMID guidelines for the management of the infection control measures to reduce transmission of multidrug-resistant Gram-negative bacteria in hospitalized patients', *Clinical Microbiology and Infection*, 20(s1), pp. 1–55. doi: 10.1111/1469-0691.12427.
- Tschudin-Sutter, S. et al. (2012) 'Rate of Transmission of Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae Without Contact Isolation', Clinical Infectious Diseases, 55(11), pp. 1505–1511. doi: 10.1093/cid/cis770.
- Visual Communication Resources | Health Literacy | CDC. Available at: https://www.cdc.gov/healthliteracy/developmaterials/visual-communication.html (Accessed: 31 October 2017).
- Watkins, L. et al. (2014) 'Transmission-based contact precautions for multidrug-resistant organisms in trauma patients', Journal of Trauma and Acute Care Surgery, 77(6), pp. 960–963. doi: 10.1097/TA.0000000000000359.
- WHO | Global action plan on antimicrobial resistance (2017). World Health Organization. Available at: http://www.who.int/antimicrobial-resistance/publications/global-action-plan/en/ (Accessed: 31 October 2017).
- Zahar, J.-R. et al. (2015) 'About the usefulness of contact precautions for carriers of extended-spectrum beta-lactamase-producing Escherichia coli', BMC Infectious Diseases, 15(1), p. 512. doi: 10.1186/s12879-015-1244-x.

| www.webbertraining.com/schedulep1.php |                                                                                                                                                                                                                               |  |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| February 14, 2019                     | (FREE Teleclass)  THE FALLOUT OF FAKE NEWS IN INFECTION PREVENTION, AND WHY CONTEXT MATTERS  Speaker: Prof. Didier Pittet, University of Geneva Hospitals, and Dr. Pierre Parneix, Hôpital Pellegrin, CHU de Bordeaux, France |  |
| February 21, 2019                     | COLLABORATIVE CLINICAL RESEARCH TO REDUCE INFECTIONS  Speaker: Prof. Elaine Larson, Columbia University, Mailman School of Public Health                                                                                      |  |
| March 7, 2019                         | GOING BEYOND THE 5 MOMENTS  Speaker: Prof. Colin D. Furness, University of Toronto                                                                                                                                            |  |
| March 21, 2019                        | INFLUENZA AND VIRAL PNEUMONIA Speaker: Prof. Rodrigo Cavallazzi, University of Louisville                                                                                                                                     |  |
| March 26, 2019                        | (European Teleclass) TAMING THE BUGS: CONTAMINATION AND INNOVATIVE APPROACHES TO STETHOSCOPE DISINFECTION Speaker: Dr. Aamer Ikram, National Institute of Health, Islamabad, Pakistan                                         |  |
| April 3, 2019                         | (South Pacific Teleclass) HEALTHCARE ASSOCIATED INFECTION SURVEILLANCE IN THE ERA OF ELECTRONIC HEALTH DATA                                                                                                                   |  |

