Surveillance of Antibiotic Resistance
Dr. Alan Johnson, NHS
Sponsored by Deb UK www.deb.co.uk

Surveillance of Antibiotic Resistance
Dr Alan Johnson
HPA Centre for Infections
Colindale, London

Epidemiology
• The study of the distribution and determination of health-related states or events in specified populations and the application of this study to control of health problems

Epidemiology of Antibiotic Resistance
• The cornerstone of epidemiology is surveillance
• Surveillance involves collection of relevant data that inform as to the prevalence of antibiotic resistance

Making Use of Surveillance Data
• Guide empirical prescribing
• Determine burden of disease
 • Resources required
 • Future action
• Use surveillance for measuring outcomes of intervention strategies

Surveillance of Antibiotic Resistance
• Data needs to be:
 • Collected
 • Stored
 • Analysed
 • Made available
 • Acted upon

Different Approaches to the Surveillance of Antibiotic Resistance
• Continuous surveillance
• Point prevalence (“snapshot”) surveys
Surveillance of Antibiotic Resistance

Dr. Alan Johnson, NHS
Sponsored by Deb UK www.deb.co.uk

Surveillance of Antibiotic Resistance

• Scope:
 • Local/National/International

• Focus:
 • Organism
 • Disease
 • Patient groups

For surveillance to be undertaken, a source of data is required

Hospital microbiology laboratories routinely identify bacteria isolated from patients and test them for antibiotic susceptibility

Results stored on laboratory database

Sentinel laboratories

• Local testing (collection of data)
• Centralized testing (collection of isolates)

Choice of sentinel laboratories

• Geography
• Type of hospital

Standard methods

Standard panels of antibiotics tested

Continuous Surveillance in England and Wales

• Since 1974, hospitals in England & Wales have reported cases of bacteraemia to the HPA
• Since 1989, laboratories have also reported results of susceptibility testing of isolates
• Voluntary scheme

Source: routine laboratory reporting to CDSC

* 2002 is provisional data

Staphylococcus aureus

Methicillin resistance as a proportion of reports with methicillin susceptibility information

Source: routine laboratory reporting to CDSC
Mandatory Reporting of *Staphylococcus aureus* and MRSA

- From April 2001, the Department of Health made it mandatory for all acute NHS trusts in England to report
 - All cases of bacteraemia caused by *S. aureus*
 - The proportion of cases due to MRSA
- Similar schemes in England, Wales, Scotland & N. Ireland

Mandatory Reporting of MRSA Bacteraemia in England, April 2003-March 2004

- Single specialty Trusts
 - 0.09 per 1000 bed days
- General Acute Trusts
 - 0.16 per 1000 bed days
- Specialist Trust
 - 0.24 per 1000 bed days

MRSA Bacteraemia Surveillance in Wales, Oct 2001-Des 2003

- 13 Trusts (Overall MRSA rate, 43%)
- General surgery 59.8%
- ITU 57.9%
- Haematology 46.8%
- General Med 41.5%
- Trauma/orthopaedics 36.6%
- Paediatrics 6.3%

DoH Press Release: 5 November 2004

Hospital superbug must be halved

Bloodstream infections with the hospital superbug MRSA must be halved in three years, the government has said.

Health Secretary John Reid tasked NHS hospitals with achieving a year on year reduction up to and beyond March 2008.

MRSA bacteraemia rate in specialist Trusts (April 2002 - March 2003)

- [Graph of MRSA bacteraemia rate* in specialist trusts (April 2002 - March 2003) with 95% confidence intervals.

Hospital superbug must be halved

Bloodstream infections with the hospital superbug MRSA must be halved in three years, the government has said.

Health Secretary John Reid tasked NHS hospitals with achieving a year on year reduction up to and beyond March 2008.
Surveillance of Antibiotic Resistance
Dr. Alan Johnson, NHS
Sponsored by Deb UK www.deb.co.uk

Resistance Rates in Hospital Units
(Fridkin et al. CID 29:245-52, 1999)

- MRSA in the Community
 - MRSA classically a HOSPITAL problem
 - Concern that MRSA would “escape” into the community (via nursing homes?)
 - Evidence of emergence of MRSA in community unrelated to the hospital environment

- Community MRSA
 - Commonly resistant to few antibiotics
 - DNA profiles distinct from hospital strains
 - Presence of Panton-Valentine Leuocidin (PVL)

- What does C-MRSA cause?
 - Primarily: skin and soft tissue infections
 - More rarely: severe invasive disease
 - Necrotising pneumonia, bacteraemia, septic arthritis, endocarditis,
 - At risk groups
 - Children
 - Sports teams
 - Military recruits
 - Prison inmates
Surveillance of Antibiotic Resistance
Dr. Alan Johnson, NHS
Sponsored by Deb UK www.deb.co.uk

Community-MRSA – Worldwide Reports

Surveillance of Antimicrobial Resistance in the Community
- Most surveillance studies use data from hospital microbiology laboratories
- Most data refers to hospitalised patients
- The majority of antibiotic use is in the community
- How do we undertake surveillance in the community?

Surveillance of Antimicrobial Resistance in the Community
- GPs prescribe antibiotics empirically
- GPs do not routinely sample patients for microbiological investigation (unless repeated treatment failure)

Q. Is International Surveillance Important?
A. Yes!
- Individuals infected or colonised with resistant pathogens may travel from one country (or continent) to another.

Surveillance of Antimicrobial Resistance in the Community
- Community surveillance via GPs?
 - Time factor (extended consultation times)
 - Would results be used just for surveillance or for patient management?
 - Would patients need to give informed consent?
 - Resources (increased costs for GPs, specimen transport, increased laboratory workloads; source of funding; etc)

Global Spread of a Multi-resistant Pneumococcal (serotype 23F) Clone

A Webber Training Teleclass
Hosted by Maria Bennallick maria@webbertraining.com
www.webbertraining.com Page 5
International Clones of Multi-resistant Pneumococci

• Using MLST, 26 clones of multi-resistant pneumococci have been recognised
• Classified by the Pneumococcal Molecular Epidemiology Network (PMEN)

PMEN Clones of Pneumococci in the UK

• All invasive pneumococci collected from a hospital in Berkshire between Jan 2000 and March 2001
• 56 patients
• 18 resistant isolates found
 • 14 ery-R were England14-9 clone
 • 3 pen-R were Spain9V-3 clone
 • 1 multi-R was Spain6B-2 clone

EARSS

• European Antimicrobial Resistance Surveillance System
• Member states of EU plus Iceland, Norway & Switzerland
• Sentinel laboratories in each country
• Two national coordinators for each country
• Resistance in nosocomial S. aureus bacteraemia and invasive S. pneumoniae from the community
• http://www.earss.rivm.nl

PEARSS 2002: MRSA Rates

Penicillin Non-susceptible Pneumococci, 1998-99

Correlation Between Out-Patient Sales of β-lactam Antibiotics and Penicillin Resistance in Pneumococci
Strategies to Reduce Antibiotic Resistance

- Antibiotic use appears to be a driving force for emergence of resistance
 - Less antibiotic use
 - Better tailored use

Macrolide-Resistance in Finland

- Reduced use from 1992 onwards was associated with reduced resistance in group A streptococci from 1994 onwards
- Erythromycin resistance in *S. pneumoniae* in Finland rose from 0.6% in 1990 to 2.4% in 1995

Declining sulphonamide use, UK

Sulphonamide resistance in *E. coli* in London

<table>
<thead>
<tr>
<th>Year</th>
<th>No</th>
<th>% Resistant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td>360</td>
<td>39.2</td>
</tr>
<tr>
<td>1999</td>
<td>365</td>
<td>45.8</td>
</tr>
</tbody>
</table>
Strategies to Reduce Antibiotic Resistance

- Not going to be easy!

Strategies to Reduce Antibiotic Resistance

- Prevention of cross-infection
- Vaccines (e.g. pneumococci)
- Development of new antibiotics

The Next Few Teleclasses

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Speaker Webinar Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 18</td>
<td>Infection Surveillance in the UK</td>
<td>Dr. Allan Johnson, NHS Link</td>
</tr>
<tr>
<td>July 27</td>
<td>Dermal Absorption of Alcohol Disinfectants</td>
<td>Dr. Axel Kramer, Germany Link</td>
</tr>
<tr>
<td>August 17</td>
<td>The Spectre of a Flu Pandemic – Is It Inevitable?</td>
<td>Dr. Lance Jennings, New Zealand Link</td>
</tr>
<tr>
<td>August 24</td>
<td>How to Assess Risk of Disease Transmission When There is a Failure to Follow Recommended Disinfection and Sterilization Principles</td>
<td>Dr. William Rutala, UNC Link</td>
</tr>
</tbody>
</table>

For the full teleclass schedule – www.webbertraining.com