Healthcare associated pneumonia (HAP) Why should we bother and what can we do?

Professor Brett Mitchell

brett.mitchell@avondale.edu.au

Twitter: @1heathau

Professor of Health Services Research and Nursing, Avondale University Adjunct Professor of Nursing, Monash University Honorary Professor, University of Newcastle Conjoint, Central Coast Local Health District Infection Research Program Co-Lead, Hunter Medical Research Institute

www.webbertraining.com

August 10, 2022

Disclosures

Received competitive research funding from government funding agencies (NHMRC, Commonwealth government, Office Teaching & Learning)

Received competitive research grants from non-government funding agencies (HCF Foundation, ACIPC, Cardinal Health, Australian College Nursing)

Consultancy (Department of Foreign Affairs and Trade, MSD)

Editor-in-Chief, Infection, Disease and Health

None relevant to this presentation

Overview

- Why?
- Causes
- Strategies to prevention HAP
- Challenges and opportunities for HAP prevention and future work

Why? - Frequency

- Pneumonia = 21.4% of HAIs in acute care hospitals
 - 60% not related to ventilation (Magill et al, 2018)
- Pneumonia = 3.7% of HAIs in long term care facilities
 - Other RTI 22%

Russo et al. Antimicrobial Resistance and Infection Control (2019) 8:114 https://doi.org/10.1186/s13756-019-0570-y Antimicrobial Resistance and Infection Control

RESEARCH

Open Access

The prevalence of healthcare associated infections among adult inpatients at nineteen large Australian acute-care public hospitals: a point prevalence survey

Philip L. Russo^{1,2,3*}⁽⁶⁾, Andrew J. Stewardson⁴, Allen C. Cheng^{5,6}, Tracey Bucknall^{3,5,7} and Brett G. Mitchell^{8,9}

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Multistate Point-Prevalence Survey of Health Care–Associated Infections

Shelley S. Magill, M.D., Ph.D., Jonathan R. Edwards, M.Stat., Wendy Bamberg, M.D., Zintars G. Beldavs, M.S., Ghinwa Dumyati, M.D., Marion A. Kainer, M.B., B.S., M.P.H., Ruth Lynfield, M.D., Meghan Maloney, M.P.H., Laura McAllister-Hollod, M.P.H., Joelle Nadle, M.P.H., Susan M. Ray, M.D., Deborah L. Thompson, M.D., M.S.P.H., Lucy E. Wilson, M.D., and Scott K. Fridkin, M.D., for the Emerging Infections Program Healthcare-Associated Infections and Antimicrobial Use Prevalence Survey Team*

Why? - Burden

Lydeamore et al. Antimicrobial Resistance & Infection Control (2022) 11:69 https://doi.org/10.1186/s13756-022-01109-8

Antimicrobial Resistance and Infection Control

RESEARCH

Open Access

Burden of five healthcare associated infections in Australia

M. J. Lydeamore^{1,2*}, B. G. Mitchell^{3,4}, T. Bucknall^{5,6}, A. C. Cheng², P. L. Russo^{7,8†} and A. J. Stewardson^{2†}

 Table 1
 Annual burden of five healthcare associated infections (HAIs), estimated from Australian point prevalence survey data from 2018

	Number of HAIs (95% UI)	Deaths (95% UI)	DALYs (95% UI)	YLL (95% UI)	YLD (95% UI)
SSI	44,238	876	13,197	12,982	214
	(31,176–63,797)	(617–1263)	(9298–19,001)	(9149–18,722)	(145–317)
UTI	42,408	729	16,087	10,983	4879
	(25,200–68,735)	(259–1772)	(5939–37,218)	(3899–26,704)	(1745–11,659)
CDI	5125	262	2757	2,635	127
	(2360–10,740)	(13–836)	(241–8655)	(128–8403)	(21–384)
HAP	51,499	1904	39,276	23,245	15,684
	(31,343–82,877)	(462–4430)	(17,608–77,915)	(5644–54,078)	(8038–28,817)
BSI	23,979	3512	46,773	39,665	6,964
	(15,658–36,245)	(1874–6075)	(26,205–79,104)	(21,159–68,610)	(3660–12,446)
All	170,574	7583	122,376	93,322	28,669
	(135,779–213,898)	(4941–11,135)	(85,136–172,784)	(61,443–135,722)	(18,571–43,924

Numbers inside brackets indicate 95% uncertainty intervals (UI). SSI surgical site infections, UTI urinary tract infections, CDI Clostridioides difficile infection, HAP healthcare acquired pneumonia, BSI bloodstream infection, DALYs disability adjusted life years, YLL years of life lost, YLD years lived with disability

Why? - Burden

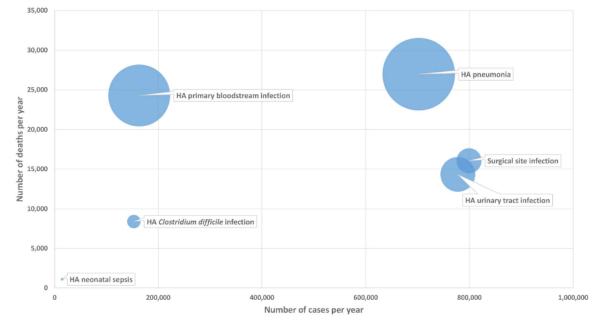


Fig 1. Six healthcare-associated infections according to their number of cases per year (x-axis), number of deaths per year (y-axis), and DALYs per year (width of bubble), EU/EEA, 2011–2012 (time discounting was not applied). DALY, disability-adjusted life year; HA, healthcare-associated.

D ossMark RESEARCH ARTICLE

Burden of Six Healthcare-Associated Infections on European Population Health: Estimating Incidence-Based Disability-Adjusted Life Years through a Population Prevalence-Based Modelling Study

Alessandro Cassini^{1,2e}*, Diamantis Plachouras¹⁰*, Tim Eckmanns³, Muna Abu Sin³, Hans-Peter Blank⁷, Tanja Ducomble⁹, Sebastian Hallen³, Thomas Harder⁹, Anja Klingeberg³, Madlen Sixtensson³, Edward Velasco³, Bettina Weiß³, Piotr Kramarz¹, Dominique L. Monnet¹, Mirjam E. Kretzschmar^{2,4}, Carl Suetens¹

1 European Centre for Disease Prevention and Control, Stockholm, Sweden, 2 Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands, 3 Robert Koch Institute, Berlin, Germany, 4 Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bitthoven, The Netherlands

Why? – Morbidity and mortality

- HAP (NV-HAP) is also associated with increased length of stay in hospital and increased patient morbidity and mortality
 - 19% of patients with HAP required transfer into an intensive care unit (ICU) (Baker & Quinn, Am J Infect Control 2018;46:2-7)
 - Mortality 18%

(Davis & Finley, Pennsylvania Patient Safety Authority. Patient Saf Advis 2012;9:99-105)

• Patients with HAP are eight times more likely to die in hospital, than similar patients without HAP

(Micek et al, Chest 2016;150:1008-14)

Why? – Morbidity and mortality

- Retrospective cohort study with propensity score matched populations (NV-HAP vs no NV-HAP
- NV-HAP occurred in 0.6% of admissions
- Mean LOS 26.3 days for NV HAP (6.7 days other HAP)
- **30-day mortality was 18.4%** (4.5% other HAP),
- 1 year mortality was 47.8% (21.4% other HAP)
- Inpatient sepsis occurred in approximately 20% of NV-HAP admissions

Evan Carey PhD ^{a,b,c,*,**}, Hung-Yuan P. Chen MPH ^{a,b}, Dian Baker PhD, APRN ^d, Richard Blankenhorn MSDA, BSF ^{a,b}, Ryan J. Vega MD, MSHA ^{e,f}, Michael Ho MD, PhD ^{a,b,g}, Shannon Munro PhD, APRN, NP ^h

Why? – Antimicrobial resistance

- HAP is a most common HAIs and is responsible for a large proportion of inappropriate antimicrobial use
 - 24.8% of antimicrobial prescribing of HCA pneumonia was inappropriate

Pathogenesis

 HAP occurs because of aspiration of the patients' own oropharyngeal material, with hospital respiratory pathogens more commonly found in the mouths of those who are unable to clear secretions (Ewan V, et al, Age and ageing 2017;46:352-8)

Risk factors

- Frailty
- Age
- Male
- Swallowing difficulties

Disclaimer

- Incidence vs prevalence
- Studies not been designed to answer this question

Risk factors

Infection Control & Hospital Epidemiology

Metrics

Supplementary materials

_	PCT		014
	131	_ V I	ew
	_		

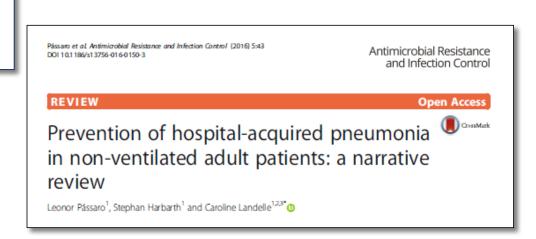
Article

Incidence and risk factors of non–device-associated pneumonia in an acutecare hospital

Paula D. Strassle (a1) (a2), Emily E. Sickbert-Bennett (a1) (a3), Michael Klompas (a4) (a5), Jennifer L. Lund (a1), Paul W. Stewart (a6), Ashley H. Marx (a7), Lauren M. DiBiase (a3) and David J. Weber (a1) (a3)

163,000 admissions; Rate 4.5/10,000 patient days Male, age bronchitis, heart failure, immunosuppressed Get

Strategies to prevention HAP


Strategies to prevention HAP: Systematic review

Review

Strategies to reduce non-ventilator-associated hospital-acquired pneumonia: A systematic review

Brett G. Mitchell ^{a,b,*}, Philip L. Russo ^{c,d,e}, Allen C. Cheng ^{f,g}, Andrew J. Stewardson ^h, Hannah Rosebrock ^a, Stephanie J. Curtis ^h, Sophia Robinson ⁱ, Martin Kiernan ^j

15 articles

Author, Year	Design	Sample	Setting	Broad intervention strategy	Significant change in pneumonia
Adachi et al., 2002 [28]	RCT	141	Nursing home	Oral care (professional)	YES
Bellisimo-Rodrigues et al., 2014 [29]	RCT	254	Hospital	Oral care (professional)	YES
			(Intensive Care Unit)		
Boden et al., 2018 [32]	RCT	441	Hospital	Physical activity	YES
Bouringault et al., 2010 [30]	RCT	2513	Nursing home	Oral care (professional)	NO
Chen et al., 2016 [40]	Cohort	873	Hospital	Oral care	YES
			(Intensive Care Unit)		
Cuesy et al., 2010 [33]	RCT	223	Hospital	Physical activity	YES
Johansen et al., 2016 [37]	Cohort	88	Hospital	Prophylactic antibiotics	YES
			(Ear, Nose and		
			Throat Department)		
McNally et al., 2018 [38]	Quasi-experimental	2891	Hospital (non-ICU)	Oral care	NO
Quinn et al., 2014 [14]	Quasi-experimental		Hospital	Oral care	Decrease+
Robertson et al., 2013 [20]	Quasi-experimental	85	Hospital	Oral care	YES
			(acute neurosurgical		
			unit)		
Schrock et al., 2018 [35]	Cohort	2372	Hospital	Dysphagia screen	YES
Stolbrink et al., 2014 [34]	Quasi-experimental	156	Hospital	Physical activity	YES
			(respiratory and		
			elderly wards)		
Titsworth et al., 2013 [36]	Cohort	2334	Hospital	Dysphagia screen	YES
Wagner et al., 2016 [39]	Cohort	1656	Hospital	Oral care	YES
Yoneyama et al., 2012 [31]	RCT	366	Nursing Home	Oral care (professional)	NO
Note: + significance values not provide	ed.				
RC			RCT		
				•	
•	3 in NH		 4 profess 	sional care	
•	3 in hospital		• 2 physica		

Oral care: No RCT

Author, Year	Docian	Sample	Setting	Broad intervention	Significant change in pneumoni
Author, fear	Design	Sample	Setting		Significant change in pheumoni
				• strategy	
Adachi et al., 2002 [28]	RCT	141	Nursing home	Oral care (professional)	YES
Bellisimo-Rodrigues et al., 2014 [29]	RCT	254	Hospital (Intensive Care Unit)	Oral care (professional)	YES
Boden et al., 2018 [32]	RCT	441	Hospital	Physical activity	YES
Bouringault et al., 2010 [30]	RCT	2513	Nursing home	Oral care (professional)	NO
Chen et al., 2016 [40]	Cohort	873	Hospital	Oral care	YES
			(Intensive Care Unit)		
Cuesy et al., 2010 [33]	RCT	223	Hospital	Physical activity	YES
Johansen et al., 2016 [37]	Cohort	88	Hospital	Prophylactic antibiotics	YES
			(Ear, Nose and		
			Throat Department)		
McNally et al., 2018 [38]	Quasi-experimental	2891	Hospital (non-ICU)	Oral care	NO
Quinn et al., 2014 [14]	Quasi-experimental		Hospital	Oral care	Decrease+
Robertson et al., 2013 [20]	Quasi-experimental	85	Hospital	Oral care	YES
			(acute neurosurgical		
			unit)		
Schrock et al., 2018 [35]	Cohort	2372	Hospital	Dysphagia screen	YES
Stolbrink et al., 2014 [34]	Quasi-experimental	156	Hospital	Physical activity	YES
			(respiratory and		
			elderly wards)		
Titsworth et al., 2013 [36]	Cohort	2334	Hospital	Dysphagia screen	YES
Wagner et al., 2016 [39]	Cohort	1656	Hospital	Oral care	YES
Yoneyama et al., 2012 [31]	RCT	366	Nursing Home	Oral care (professional)	NO

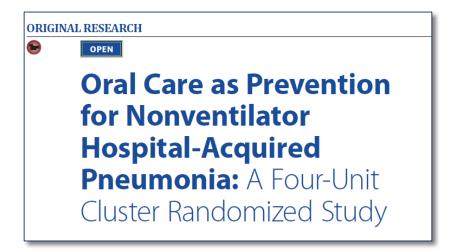
Prevention: Oral care

Study (first author)	Outcome	Intervention (n)		Control (n)	
		Event	Total	Event	Total
Professional dental c	are				
Adachi	Fatal aspiration pneumonia	2	40	8	48
Bellisimo-Rodrigues	Pneumonia in non-ventilated patients	0	127	1	127
Yoneyama	Pneumonia	21	184	34	182
	Fatal pneumonia	14	184	30	182
Bourigault	Patients with pneumonia	93	868	203	1645
	Fatal pneumonia	15	868	26	1645
Non-professional den					
Chen	Hospital acquired pneumonia	84	661	44	212
McNally	Hospital acquired pneumonia	25	1403	26	1487
Quinn	Hospital acquired pneumonia	Unclear	Unclear	Unclear	Unclear
Robertson	Hospital acquired pneumonia	2	32	13	51
Wagner	Hospital acquired pneumonia (post-stroke)	98	949	99	707

Significant heterogeneity in interventions

- Frequency
- Antiseptic

Prevention: Oral care


• Unsurprisingly, evidence suggests that improving oral care may reduce the incidence of HAP

(Pássaro L, et al, Antimicrob Resist Infect Control 2016;5:43)

• Improvements in oral care are considered a modifiable risk factor for HAP

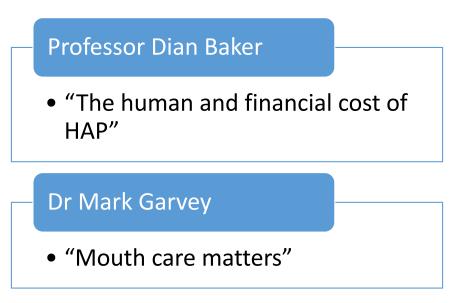
Prevention: Oral care

- Effectiveness of standardised oral care
- Oral care
 - 10.95 to 2.25 / day
- NV-HAP incidence rate
 82%

American Journal of Nursing (2021)

Karen K. Giuliano, Daleen Penoyer, Aurea Middleton, Dian Baker

The challenges with oral care



The challenges with oral care

- While oral care may seem deceptively simple in terms of base care provision, hospital and nursing services struggle to provide effective oral care delivery with high-reliability.
- Barriers to oral care include:
 - (1) the perception that oral care is an optional daily care activity for patient's comfort
 - (2) hospitals supply inadequate, poorly designed oral care materials, and
 - (3) hospitals are not required to monitor the incidence of NV-HAP.
 - Munro, S., & Baker, D. (2018). Reducing missed oral care opportunities to prevent non-ventilator associated hospital acquired pneumonia at the Department of Veterans Affairs. *Applied Nursing Research*, *44*, 48-53.

Podcast on infection control matters: HAP

Podcast: Free, not sponsored, no ads

Other considerations

We know oral care is sub-standard, and improving oral care is hard

Received: 24 February 2018	Revised: 21 January 2019	Accepted: 9 February 2019
DOI: 10.1111/jocp.1/020		

REVIEW

Correspondence

WILEY Clinical Nursing

Oral care practices in non-mechanically ventilated intensive care unit patients: An integrative review

Kimberly Paige Emery^{1,2} | Frank Guido-Sanz¹

³College of Nursing, University of Central Florida, Orlando, Florida
²Orlando Regional Medical Center, Orlando Health, Orlando, FL

Kimberly P. Emery, College of Nursing.

University of Central Florida, Orlando, FL.

Email: emery.kimberly@knights.ucf.edu

Abstract

Aims and objectives: To explore current oral care practices in nonmechanically ventilated ICU patients.

Background: Oral hygiene is an important aspect of nursing care in hospitalised populations. Oral care is a disease preventive and cost-effective measure for patients, particularly in ICU patients. Numerous studies support the value of oral care prac-

Variation in

- ✓ Type of oral care
- ✓ Products used
- ✓ Frequency
- ✓ Documented practices
- ✓ Staff performing

Other considerations

We know oral care is sub-standard, and improving oral care is hard

Original Article

Oral Care Clinical Trial to Reduce Non–Intensive Care Unit, Hospital-Acquired Pneumonia: Lessons for Future Research

Edel McNally • Gintas P. Krisciunas • Susan E. Langmore • Janet T. Crimlisk • Jessica M. Pisegna • Joseph Massaro

ABSTRACT

Hospital-acquired pneumonia (HAP) contributes greatly to patient mortality and healthcare costs. Studies have shown that aggressive oral care in intensive care units (CUs) can significantly reduce pneumonia rates, and hospitals have implemented stringent protocols in this setting. However, fittle is known about the effectiveness of aggressive oral care in reducing HAP in non-intensive care wards, prompting us to conduct a nonrandomized controlled clinical trial. A structured toothbrushing program was provided to an experimental cohort of patients. A control group received usual care. Patient demographics, toothbrushing frequency, and pneumonia diagnosis were recorded over a 3.5-month period. Difference in pneumonia rates between control and experimental group was found (1.7% versus 1.8%). Toothbrushing rates increased significantly in the experimental group ($\rho = .002$) but fell short of protocol frequency. It became apparent that aggressive toothbrushing program implementation requires nursing-led interdisciplinary involvement, more intensive training, a streamlined documentation system, and efficient compliance tracking. Lessons from this study should be used for future targe-scale research. A second ay analysis of these data did, however, suggests that increasing toothbrushing rates may have the potential to reduce pneumonia in the non-ICU axub care setting.

Keywords: hospital-acquired pneumonia, oral care, toothbrushing

- Aggressive oral care
- Non randomised trial
- No difference in pneumonia found
- Tooth brushing rates increased but fell short of protocol frequency
- Average 1.2 to 1.6 day (goal 3 times a day)

Prevention: Dysphagia

- Non-randomised studies used dysphagia screening as the primary method for NV-HAP prevention
 - dysphagia screening test was applied to all acute stroke patients in the emergency department.
 - a nurse-led bedside dysphagia screen and a rapid clinical swallow undertaken by a speech pathologist

(Schrock et al., 2018; Titsworth et al., 2013)

Prevention: Movement

- Studies that involve a form of physical activity as a way of reducing the incidence of NV-HAP
 - effect of turning and passive mobilisation on patients with acute ischemic stroke (TurnMob study) (Cuesy et al., 2010) (RCT)
 - pre-operative patient education, early ambulation and self-directed breathing exercises, and additional pre-operative physiotherapy (Boden et al., 2018) (RCT)
 - physiotherapy-based intervention that involved early mobilisation in patients following a hip fracture (Stolbrink et al., 2014)

Diagnosis

Diagnosis

Used different definitions for determining cases of NV-HAP, including

- Chest radiography with clinical symptoms of pneumonia
- Administrative coding data
- Clinical Pulmonary Infection Score
- Centers for Disease Control and Prevention (CDC) definition
- National professional guidelines
- Less clear or did not specify the diagnostic approach

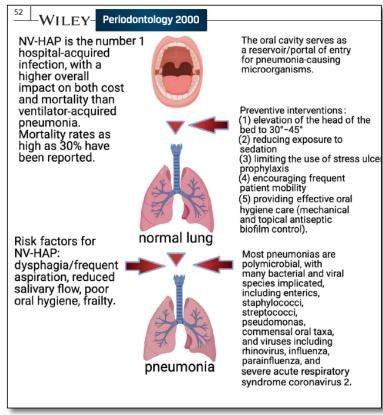
Diagnosis

Original article

Development and validation of a semi-automated surveillance system—lowering the fruit for non-ventilator-associated hospitalacquired pneumonia (nvHAP) prevention*

A. Wolfensberger ^{1, *}, W. Jakob ², M. Faes Hesse ¹, S.P. Kuster ¹, A.H. Meier ¹, P.W. Schreiber¹, L. Clack¹, H. Sax¹

acquired complication (HAC)?


D. Bartley^a, R. Panchasarp^a, S. Bowen^b, J. Deane^c, J.K. Ferguson^{c,d,*}

Take home messages

• Oral care

• Dysphagia

Mobilisation

 Scannapieco, F. A., Giuliano, K. K., & Baker, D. (2022). Periodontology 2000, 89(1), 51-58.

Other considerations

frontiers in Cellular and	Infection Microbiology	ORIGINAL RESEARCH published: 20 February 2018 doi: 10.3389/fclmb.2018.00042
		County for
	Oropharyngeal Micr Older Patients Unaf Hospital	
	Victoria C. Ewan ^{1,2*} , William D. K. Reid ³ , Mark S Steven P. Rushton ⁴ and William G. Wade ⁵	Shirley4, A. John Simpson2,
	¹ South Tees Hospital, NHS Foundation Trust, Middlesbrough, Un School, Newcastie University, Newcastie upon Tyne, United Kingi	

School, Newastle Linkwardt, Newastle upon Tjmu, Linter Kingdom, "A Martin Sciences, School of Natural and Entrommetal Sciences, Newastle Linkwardt, Newastle upon Tjmu, Linter Kingdom, "Model, Klavken, Peloty, School of Natural and Entrotometal Sciences, Newastle Linkwardt, Newastle upon Tjmu, Linter Argubam, "Centre for Immunobiology, Bleart Initiate, Barts and The London School of Medicine and Dentatry, Queen Mary Linkwartly of London, London, Linted Klapdom

Other considerations

Opportunities

- Epidemiological understanding
- Baseline oral care look like and how can we improve oral care?
- Baseline patient movement

Healthcare associated pneumonia (HAP) Why should we bother and what can we do?

Professor Brett Mitchell

brett.mitchell@avondale.edu.au

Twitter: @1heathau

www.webbertraining.com/schedulep1.php

gojo.com

gamahealthcare.com