"Risk factors for the environmental spread of different multi drug-resistant organisms"

Jean – Ralph Zahar

Infection Control Unit French-Muslim Hospital, Bobigny, France

jeanralph.zahar@aphp.fr

Hosted by Paul Webber paul@webbertraining.com

www.webbertraining.com

July 27, 2022

Should we be interested in this issue?

- A definite increase in the prevalence of MDRO colonization
- Increased risk of hospital acquisition
- In case of acquisition a risk of secondary infection and a higher risk of mortality

How does the environment contribute to the acquisition of MDRO ?

Artasensi A, Mazzotta S, Fumagalli L. Back to Basics: Choosing the Appropriate Surface Disinfectant. Antibiotics (Basel). 2021 May 21;10(6):613.

Classification of biological agents

Risk Classification	Description	Examples	Heading		
Category 1	Pathogen with a low probability of developing diseases in the human organism	Nonpathogenic strains of <i>Escherichia</i>			
Category 2	Pathogen that may cause pathology in humans and be a potential hazard for workers; it's unlikely that can be spread in the community; usually, there are effective treatments	HIGH-RISK MICROBES			
Category 3	Category 3Pathogen that may cause severe illness in humans and be a serious hazard for workers; the biological agent may spread in the community, but usually effective treatments are availableHIV, Bacillus anthracis, HBV, HCV, Mycobacterium tuberculosis				
Category 4	Category 4 Pathogen that may cause severe illness in humans and may be a serious hazard for workers; the biological agent can spread in the community, and usually, there are a effective treatments available Ebola virus, Lassa virus, Smallpox virus. Nonpathogenic strains of Escherichia Measles virus, no effective treatments available Smallpox virus.		CATEGORY 2		
	Pathogens with a low probability of developing diseases in human organisms. Pathogens that may cause pathology in humans and be a potential hazard for	Saimonella, Legionella	CATEGORY 1 LOW-RISK MICROBES		
	workers; it is unlikely that they can be spread in the community; usually, there are effective treatments				

Table 2. Classification of biological agents.

Artasensi A, Mazzotta S, Fumagalli L. Back to Basics: Choosing the Appropriate Surface Disinfectant. Antibiotics (Basel). 2021 May 21;10(6):613.

MDRO : what are the questions being asked?

- What is the importance or magnitude of the problem ?
- Does this problem specific to a particular situation?
- Does this problem concern all patients?

Epidemiology of contaminated surfaces

- Surface contamination contributes to the risk of transmission both directly and indirectly
- It is difficult to predict the frequency of contamination of surfaces according to the species concerned, it depends of
 - The volume of the reservoir
 - The specificity of the species concerned its ability to survive outside its host, its ability to sporulate
 - The quality of biocleaning
 - The outbreak situation

All patients do not spread in the same way

Bonten MJ, Hayden MK, Nathan C, van Voorhis J, Matushek M, Slaughter S, Rice T, Weinstein RA. Epidemiology of colonisation of patients and environment with vancomycin-resistant enterococci. Lancet. 1996 Dec 14;348(9042):1615-9. Lerner A, Adler A, Abu-Hanna J, Cohen Percia S, Kazma Matalon M, Carmeli Y. Spread of KPC-producing carbapenem-resistant Enterobacteriaceae: the importance of super-spreaders and rectal KPC concentration. Clin Microbiol Infect. 2015 May;21(5):470.e1-7.

Different species = different risk ?

Table 2

Univariate and multivariate analysis of risk factors for environmental contamination

	Environmental contamination $(n = 10)^*$	Others $(n = 84)^{\dagger}$	Univariate analysis: OR, [95% CI], <i>P</i> value	Multivariate analysis: OR, [95% CI], <i>P</i> value
Nosocomial/community acquisition	4/6	45/39	0.58 [0.13-2.55], <i>P</i> = .58	Ns
E coli/Klebsiella	1/9	45/39	10.38 [1.24-228.58], P = .02	11.6 [1.37-97.67], P = .02
Room cleaning before/after environmental sampling	7/3	68/16	0.55 [0.11-3.04], <i>P</i> = .69	Ns
Colonized/infected status	8/2	69/15	0.87 [0.15-6.61], <i>P</i> = .78	Ns
Antibiotics (yes/no)	6/4	49/35	1.07 [0.24-4.94], P = .81	Ns
Invasive device (yes/no)	9/1	51/33	5.82 [0.69-128.39], P = .14	6.8 [0.78-59.2], P = .08
Time elapse between acquisition and environmental sampling, mean days (SD)	21.2 (27.75)	14.6 (36.92)	0.006	1.0 [0.98-1.017], <i>P</i> = .98
Incontinence (yes/no)	5/5	44/40	0.91, [0.21-3.98], <i>P</i> = .84	Ns

Guet-Revillet H, Le Monnier A, Breton N, Descamps P, Lecuyer H, Alaabouche I, Bureau C, Nassif X, Zahar JR. Environmental contamination with extended-spectrum βlactamases: is there any difference between Escherichia coli and Klebsiella spp? Am J Infect Control. 2012 Nov;40(9):845-8.

Which patients disseminate more (infected or colonized) ?

Asymptomatic carriers are a potential source for transmission of epidemic and nonepidemic Clostridium difficile strains among long-term care facility residents. Clin Infect Dis. 2007 Oct 15;45(8):992-8. Mayer RA, Geha RC, Helfand MS, Hoyen CK, Salata RA, Donskey CJ. Role of fecal incontinence in contamination of the environment with vancomycin-resistant enterococci. Am J Infect Control. 2003 Jun;31(4):221-5.

Survival in the environment is variable depending on the microbial species

	% of site contamination	Study
MRSA	24 – 89%	Otter et al, JHI 2007 Dryden et al, JHI 2008 French et al, JHI 2004
C difficile	25% - 75%	Barbut et al, ICGE 2009 Boyce et al, ICHE 2008 Weber et al, AJIC 2010
Serratia (GNB)	~8%	Bates et al, JHI 2005 Otter et al, JHI 2007
Acinetobacter baumannii	~50%	Weber et al, AJIC 2010
VRE	94%	Eckenstein et al, BMC Inf dis 2007

Survival in the environment is variable depending on the microbial species Type of bacterium Duration of persistence (range)

Type of bacterium	Duration of persistence (range)
Acinetobacter spp.	3 days to 5 months
Bordetella pertussis	3 – 5 days
Campylobacter jejuni	up to 6 days
Clostridium difficile (spores)	5 months
Chlamydia pneumoniae, C. trachomatis	≤ 30 hours
Chlamydia psittaci	15 days
Corynebacterium diphtheriae	7 days – 6 months
Corynebacterium pseudotuberculosis	I-8 days
Escherichia coli	1.5 hours – 16 months
Enterococcus spp. including VRE and VSE	5 days – 4 months
Haemophilus influenzae	12 days
Helicobacter pylori	≤ 90 minutes
Klebsiella spp.	2 hours to > 30 months
Listeria spp.	l day – months
Mycobacterium bovis	> 2 months
Mycobacterium tuberculosis	I day – 4 months
Neisseria gonorrhoeae	I — 3 days
Proteus vulgaris	I – 2 days
Pseudomonas aeruginosa	6 hours – 16 months; on dry floor: 5 weeks
Salmonella typhi	6 hours – 4 weeks
Salmonella typhimurium	10 days – 4.2 years
Salmonella spp.	l day
Serratia marcescens	3 days – 2 months; on dry floor: 5 weeks
Shigella spp.	2 days – 5 months
Staphylococcus aureus, including MRSA	7 days – 7 months
Streptococcus pneumoniae	I – 20 days
Streptococcus pyogenes	3 days – 6.5 months
Vibrio cholerae	I – 7 days

Saliba R, Ghelfenstein-Ferreira T, Lomont A, Pilmis B, Carbonnelle E, Seytre D, Nasser-Ayoub E, Zahar JR, Karam-Sarkis D. Risk factors for the environmental spread of different multidrug-resistant organisms: a prospective cohort study. J Hosp Infect. 2021 May;111:155-161. Kramer A, Schwebke I, Kampf G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect Dis. 2006 Aug 16;6:130. 12

Is the frequency of contamination the same during non outbreaks period?

	Any bacteria $\geq 1 \text{ cfu/cm}^2$	Staphylococcus aureus	Enterobacterales
Over-bed table	59.8 %	1.4%	4.2%
Chair	69. 1%	1.9%	2.8%
Bed rails	74.7%	3.7%	1%
Toilet seat	82.6%	2.6%	11.2%
Door and closet knobs	57.5%	1.4%	0%

Environmental contamination according to selected surfaces

Variable	Contaminated rooms (N = 54)	Non-contaminated rooms (N = 53)	Multivariate analysis P-value	Odds ratio
Patients known carrier or infected with MDRO	6 (11.1%)	13 (24.5%)	0.01	0.25 (0.09-0.72)
Recent surgery	14 (25.9%)	20 (37.7%)		
Comatose patients	2 (3.7%)	0		
Any invasive devices	23 (42.6%)	32 (60.4%)	0.91	
Urinary catheter	1 (1.85%)	11 (20.7%)	0.03	0.19 (0.04-0.89)
Venous catheter	22 (40.7%)	30 (56.6%)	0.17	
Dependent patients	14 (25.9%)	17 (32%)		
Antibiotic therapy	12 (22.2%)	19 (35.6%)	0.12	
Single room	30 (55.5%)	43 (81.1%)	0.0005	0.3 (0.15-0.6)
Time elapsed between admission and sampling (days), mean value	7.1	9.8		

MDRO, multidrug-resistant organism.

Pilmis B, Billard-Pomares T, Martin M, Clarempuy C, Lemezo C, Saint-Marc C, Bourlon N, Seytre D, Carbonnelle E, Zahar JR. Can environmental contamination be explained by particular traits associated with patients? J Hosp Infect. 2020 Mar;104(3):293-297.

Other factors involved in survival

- Many factors are associated with survival in the environment including
 - The initial inoculum
 - The presence of biological material
 - Sensitivity to ultraviolet light
 - Heat resistance
 - Type of surfaces

Dai R, Liu S, Li Q, Wu H, Wu L, Ji C. A systematic review and meta-analysis of indoor bioaerosols in hospitals: The influence of heating, ventilation, and air conditioning. PLoS One. 2021 Dec 23;16(12):e0259996.

What are other variables need to be considered ?

- Are there differences depending on the ward concerned ?
- Could we define a "high risk surfaces" ?
- What about other environmental reservoirs ?

Are there differences depending on the ward concerned ?

Ward concerned	Risk of acquisition	Risk of sustained colonisation	Risk of secondary infection	Risk of mortality
ICU	++ (workload)	++ (Colonisation pressure)	+(invasive procedures)	++
Hematological	++ (workload)	++ (Colonisation pressure)	++ (neutropenia)	+++(40%)
Neonatology	++ (dependency)	+/-	++ (immaturity)	++
LTCF	++ (dependency)	+/-	+/-	++
Others				++

Huang SS, Datta R, Platt R. Risk of acquiring antibiotic-resistant bacteria from prior room occupants. Arch Intern Med. 2006 Oct 9;166(18):1945-51. Drees M, Snydman DR, Schmid CH, Barefoot L, Hansjosten K, Vue PM, Cronin M, Nasraway SA, Golan Y. Prior environmental contamination increases the risk of acquisition of vancomycin-resistant enterococci. Clin Infect Dis. 2008 Mar 1;46(5):678-85. seir S, Blazejewski C, Lubret R, Wallet F, Courcol R, Durocher A. Risk of acquiring multidrug-resistant Gram-negative bacilli from prior room occupants in the intensive care unit. Clin Microbiol Infect. 2011 Aug;17(8):1201-8.

Risk of organism acquisition from prior room occupants: a systematic review and meta-analysis

B.G. Mitchell^{a, b, *}, S.J. Dancer^c, M. Anderson^a, E. Dehn^a

	Decreased acqu	uisition	Contr	rol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Huang (MRSA)	57	1454	248	8697	16.2%	1.39 [1.04, 1.86]	
Nseir (ESBL producing Gram neg)	8	50	50	461	0.0%	1.57 [0.70, 3.52]	
Huang (VRE)	58	1291	256	9058	16.2%	1.62 [1.21, 2.16]	
Ajao (Klebsiella sp. or Escherichia coli)	32	648	235	8723	14.2%	1.88 [1.29, 2.74]	
Nseir (Pseudomonas)	21	85	61	426	10.4%	1.96 [1.12, 3.45]	
Drees (VRE)	19	138	31	500	9.7%	2.42 [1.32, 4.43]	
Shaughnessy (Clostridium difficile)	10	91	77	1679	8.3%	2.57 [1.28, 5.15]	
Mitchell (MRSA)	74	884	163	5344	16.4%	2.90 [2.18, 3.86]	
Nseir (Acinetobacter)	16	52	41	459	8.6%	4.53 [2.32, 8.86]	
Total (95% CI)		4643		34886	100.0%	2.14 [1.65, 2.77]	•
Total events	287		1112				
Heterogeneity: $Tau^2 = 0.09$; $Chi^2 = 21.32$, df =	7 ($\mathbf{P} = 0.003$); \mathbf{I}^2 :	= 67%				-	
Test for overall effect: $Z = 5.74$ (P < 0.00001)							0.1 0.2 0.5 1 2 5 10
							Decreased acquisition Increased acquisition

Mitchell BG, Dancer SJ, Anderson M, Dehn E. Risk of organism acquisition from prior room occupants: a systematic review and meta-analysis. J Hosp Infect. 2015 Nov;91(3):211-7.

Could we define a « high risk surfaces » ?

• Frequently touched items such as telephones, handles, taps, light switches, levers, knobs, buttons, keyboards, push plates

Category of surface touched or handled during 40 \times 30 min observed sessions	Site	Total no. of times touched	% touched of all sites handled
Near-patient surfaces (in room)	Patient console	8	5%
•	Notes	37	22%
	Bed frame	19	11%
	Locker	4	2%
	Curtains	6	4%
	Category total (%)	74	44%
Clinical equipment (in room)	Hoist	0	0%
	Commode	4	2%
	BP stand	10	6%
	Stethoscope	3	2%
	IV drip	23	14%
	Category total (%)	40	24%
Far-patient surfaces (outside room)	Computer	20	12%
	Filing cabinet	0	0
	Notes trolley	18	11%
	Telephone	16	9 %
	Category total (%)	54	32%
Total items touched		168	100%

BP, blood pressure; IV, intravenous.

Total number of times handled exceeds values listed in Table I since some items were touched on multiple occasions.

Smith SJ, Young V, Robertson C, Dancer SJ. Where do hands go? An audit of sequential hand-touch events on a hospital ward. J Hosp Infect. 2012 Mar;80(3):206-11.

Could we define a « high risk surfaces » ?

FIG 1 Locations of testing for environmental CRE (eCRE). 1, personal bedside table; 2 to 4, bed linen around the pillow (2), crotch (3), and legs (4); 5, pulse oximeter; 6, personal bedside chair; 7, electrical outlet line; 8, manual respirator bag; 9, infusion pump; 10, dedicated stethoscope; 11, ventilator; 12, suction machine; 13, cardiovascular monitor screen; 14, enteral feeding pump.

Lerner A, Adler A, Abu-Hanna J, Meitus I, Navon-Venezia S, Carmeli Y. Environmental contamination by carbapenem-resistant Enterobacteriaceae. J Clin Microbiol. 2013 Jan;51(1):177-81.

What about other environmental reservoirs ?

• Several studies suggested a high rate of tap water and sink contamination

 Several studies suggested the role of contaminated sink as the source of outbreak

Leitner E, Zarfel G, Luxner J, Herzog K, Pekard-Amenitsch S, Hoenigl M, Valentin T, Feierl G, Grisold AJ, Högenauer C, Sill H, Krause R, Zollner-Schwetz I. Contaminated handwashing sinks as the source of a clonal outbreak of KPC-2-producing Klebsiella oxytoca on a hematology ward. Antimicrob Agents Chemother. 2015 Jan;59(1):714-6. Umezawa K, Asai S, Ohshima T, Iwashita H, Ohashi M, Sasaki M, Kaneko A, Inokuchi S, Miyachi H. Outbreak of drug-resistant Acinetobacter baumannii ST219 caused by oral care using tap water from contaminated hand hygiene sinks as a reservoir. Am J Infect Control. 2015 Nov;43(11):1249-51. Clarivet B, Grau D, Jumas-Bilak E, Jean-Pierre H, Pantel A, Parer S, Lotthé A. Persisting transmission of carbapenemase-producing Klebsiella pneumoniae due to an environmental reservoir in a university hospital, France, 2012 to 2014. Euro Surveill. 2016 Apr 28;21(17).

Risk related to sink

Valentin AS, Santos SD, Goube F, Gimenes R, Decalonne M, Mereghetti L, Daniau C, van der Mee-Marquet N; SPIADI ICU group. A prospective multicentre surveillance study to investigate the risk associated with contaminated sinks in the intensive care unit. Clin Microbiol Infect. 2021 Feb 25:S1198-743X(21)00100-2.

Do we have enough arguments ?

Table 1 The key epidemiologic features of HAP transm	nission.
Epidemiologic Feature	References
Shedding of gastrointestinal tract colonizing pathogens is unpredictable and prolonged; it fluctuates; and it is impacted by colonic flora disbiosis.	Donskey et al, ¹² 2000; Chang et al, ¹³ 2009; Sethi et al, ¹⁴ 2009, Sethi et al, ¹⁵ 2010; Kundrapu et al, ¹⁶ 2015; Faired et al, ¹⁷ 2013; Miles et al, ¹⁸ 2015; Tschudin-Sutter et al, ¹⁹ 2015
Environmental contamination by HAI pathogens is common, greatest on surfaces closest to the patient, quantitatively variable, and often sparse.	Chang et al, ²⁰ 2011; Weber et al, ²¹ 2010; Donskey, ²² 2013; Sitzlar et al, ²³ 2013; Linder et al, ²⁴ 2014; Creamer et al, ²⁵ 2014
Environmental contamination is almost equally associated with colonize or infect a recipient patients.	Guerrero et al, ²⁶ 2013; Linder et al, ²⁴ 2014; Kundrapu et al, ¹⁶ 2015; Gavalda et al, ²⁷ 2015
All common HAI pathogens survive for many hours to months on a wide range of patient zone surfaces.	Kramer et al, ²⁸ 2006; Dancer, ¹¹ 2014; Munoz-Price & Weinstein, ²⁹ 2015
Health care personnel have frequent contact with HAP-contaminated surfaces	Guerrero et al, ³⁰ 2012; Kundrapu et al, ³¹ 2012; Morgan et al, ³² 2012; Dancer, ¹¹ 2014
Contact with the environment is as likely to contaminate health care workers' hands.	Donskey, ²² 2013; Weber et al, ²¹ 2013; Ferng et al, ³³ 2015, Thomas et al, ³⁴ 2015
The dose of pathogen needed to colonization or infect of a recipient with most HAPs is typically very low.	Weber et al, ²¹ 2013; Dancer, ¹¹ 2014
Surface-contaminating HAPs range widely in their sensitivity to chemical disinfects UV light and antimicrobial surface treatments.	Rutala & Weber, ³⁵ 2014; Nerandzic et al, ³⁶ 2015

Carling PC. Optimizing Health Care Environmental Hygiene. Infect Dis Clin North Am. 2016 Sep;30(3):639-60.

What are the questions at this point ?

- What is the amount of direct transmission from the environment ?
- Improving environmental hygiene is associated with decrease of Health acquired infections (HAI) ?
- Are there any risks in improving the cleaning of the environment ?

What is the amount of direct transmission from the environment ?

- Difficult to answer this question
- There are many risk factors and confounding factors
 - The patient's profile
 - The workload
 - Exposure to and duration of invasive procedures
 - The antibiotic selective pressure
 - The colonization pressure
- Improving Environmental hygiene is associated with improving hand hygiene

A multimodal intervention program to control a long-term *Acinetobacter baumannii* endemic in a tertiary care hospital

Environmental decontamination Hand hygiene Antimicrobial stewardship Contacts precautions Active surveillance Weekly reports Regular meetings

Valencia-Martín R, Gonzalez-Galan V, Alvarez-Marín R, Cazalla-Foncueva AM, Aldabó T, Gil-Navarro MV, Alonso-Araujo I, Martin C, Gordon R, García-Nuñez EJ, Perez R, Peñalva G, Aznar J, Conde M, Cisneros JM; In representation of A. baumannii eradication program. A multimodal intervention program to control a long-term Acinetobacter baumannii endemic in a tertiary care hospital. Antimicrob Resist Infect Control. 2019 Dec 4;8:199.

Improving environmental hygiene is associated with decrease of Health acquired infections (HAI) ?

Improving environmental hygiene is associated with decrease of Health acquired infections (HAI) ?

Table 2.	Predictors	of MRSA and	VRE Acquisition
----------	------------	-------------	-----------------

Model ^a	Odds Ratio (95% Confidence Interval)	P Value
	MBSA	
Pre-ICU length of stav	1.2 (1.1-1.3)	<.001
Duration of room vacancy between occupants	0.9 (0.8-1.0)	.03
Age per decade increase	1.1 (1.0-1.2)	<.001
End-stage liver disease	1.8 (1.2-2.9)	.008
Prior occupant status and intervention interaction Baseline		
MRSA-negative	1 [Reference]	
MRSA-positive	1.3 (1.0-1.8)	.04
Intervention		
MRSA-negative	0.6 (0.5-0.7)	<.001
MRSA-positive	0.5 (0.3-0.8)	.006
	VRE	
Pre-ICU length of stay	1.4 (1.3-1.6)	<.001
Age, in decades	1.1 (1.1-1.2)	<.001
Male sex	0.8 (0.7-1.0)	.05
Surgical ICU (vs medical)	0.5 (0.3-0.7)	<.001
Diabetes mellitus	1.3 (1.1-1.6)	.004
End-stage renal disease	1.5 (1.1-2.0)	.008
Hematologic malignant neoplasm	1.4 (1.0-1.8)	.04
Prior occupant status and intervention interaction		
Baseline		
VRE-negative	1 [Reference]	
VRE-positive	1.4 (1.0-1.8)	.04
Intervention		
VRE-negative	0.6 (0.5-0.8)	<.001
VRE-positive	0.9 (0.6-1.2)	.35

Hayden MK, Bonten MJ, Blom DW, Lyle EA, van de Vijver DA, Weinstein RA. Reduction in acquisition of vancomycin-resistant enterococcus after enforcement of routine environmental cleaning measures. Clin Infect Dis. 2006 Jun 1;42(11):1552-60. Datta R, Platt R, Yokoe DS, Huang SS. Environmental cleaning intervention and risk of acquiring multidrug-resistant organisms from prior room occupants. Arch Intern Med. 2011 Mar 28;171(6):491-4.

Preventing the transmission of multidrug-resistant organisms (MDROs): Modeling the relative importance of hand hygiene and environmental cleaning interventions

Barnes SL, Morgan DJ, Harris AD, Carling PC, Thom KA. Preventing the transmission of multidrug-resistant organisms: modeling the relative importance of hand hygiene and environmental cleaning interventions. Infect Control Hosp Epidemiol. 2014 Sep;35(9):1156-62.

Improving environmental hygiene is associated with decrease of Health acquired infections (HAI) ?

• A large number of reports include cleaning as an important control component for outbreak

Donskey CJ. Does improving surface cleaning and disinfection reduce health care-associated infections? Am J Infect Control. 2013 May;41(5 Suppl):S12-9. Carling PC. Health Care Environmental Hygiene: New Insights and Centers for Disease Control and Prevention Guidance. Infect Dis Clin North Am. 2021 Sep;35(3):609-629.

Are there any risks in improving the cleaning of the environment ?

Samreen, Ahmad I, Malak HA, Abulreesh HH. Environmental antimicrobial resistance and its drivers: a potential threat to public health. J Glob Antimicrob Resist. 2021 Dec;27:101-111.

A review on biocide reduced susceptibility due to plasmidborne antiseptic-resistant genes—special notes on pharmaceutical environmental isolates

Authors	Country	Test isolates (numbers tested)	Tested biocides	Reduced susceptibility (increased MIC values) correlated with the presence of genes		
				Significant correlation	Not significant correlation	Gene function
Abuzaid et al. (2012)	United Kingdom	Klebsiella pneumoniae (64)	CHG	cepA qac∆E1	-	cepA beta-lactamase gene; qac∆E1 efflux pump gene
Abuzaid and Amyes (2015)	United Kingdom	K. pneumoniae (34)	CHG	cepA	-	cepA beta-lactamase gene
Naparstek <i>et al.</i> (2012)	Israel	K. pneumoniae (126)	CHG	_	серА	cepA beta-lactamase gene
Azadpour et al. (2015)	Iran	MDR K. pneumoniae (34)	QAC (dodecyl dimethyl ammonium chloride)		серА дәс∆Е1	qac∆E1 efflux pump gene
Babaei <i>et al.</i> (2015)	Malaysia	MDR Acinetobacter baumannii (122)	CLX BC BZT	-	qacE	qac∆E efflux pump gene
Liu <i>et al.</i> (2017)	China	Carbapenem- resistant A. baumannii (51)	BC CHG	qacE	qac∆E1	qac∆E1 efflux pump gene
Gomaa <i>et al.</i> (2017)	Egypt	A. baumannii (56)	CHG Cetrimide	qacE qac∆E1	-	qac∆E1 and <i>qacE</i> efflux pump genes
Romão <i>et al.</i> (2011)	Brazil	Pseudomonas aeruginosa (124)	BC	-	qac∆E1	qac∆E1 efflux pump gene
Ignak <i>et al.</i> (2017)	Turkey	Staphylococcus sp.	BC CHG	qacA/B	 qacA/B	qacA/B efflux pump gene qacA/B efflux pump gene
Conceição et al. (2016)	African countries (Angola, Cape Verde, São Tomé and Príncipe)	82 MRSA and 219 MSSA	CHG	-	qacAB norA	qacA/B efflux pump gene; norA—quinolone resistance protein against <i>S. aureus</i>
Vali <i>et al.</i> (2017)	Kuwait	MRSA (121) MSSA (56)	CHG	_	qacA	qacA efflux pump gene

Vijayakumar R, Sandle T. A review on biocide reduced susceptibility due to plasmid-borne antiseptic-resistant genes-special notes on pharmaceutical environmental isolates. J Appl Microbiol. 2019 Apr;126(4):1011-1022.

Can we reduce the consumption of biocides ?

Carling PC. Health Care Environmental Hygiene: New Insights and Centers for Disease Control and Prevention Guidance. Infect Dis Clin North Am. 2021 Sep;35(3):609-629.

Can we reduce the consumption of biocides ?

Disinfectant	Mechanism of Action	Cellular Effect	Antimicrobial Effect	Advantages	Disadvantages
Chlorine compounds	Oxidation of side chains amino acids in proteins	Unfolding tertiary structure and protein aggregation	Bactericidal, fungicidal, virucidal sporicidal	-Not flammable -Fast-acting -Low-cost -Resistant to water hardness -Relatively stable	-Salt residues -Corrosive to metals -Affected by organic matter -Fabric discoloration -Potential production of trihalomethane -Irritating odor at high concentrations
Iodine compounds	Oxidation of thiol groups to disulfides in proteins	Modification of structural protein and/or alterations in enzyme activities	Bactericidal, virucidal	-Not flammable	-Limited spectrum of activity -Degradation of silicone catheters -Staining for surfaces
Alcohols	Denaturation and precipitations of cytoplasmic and membrane proteins	Alteration in metabolic processes, membrane damage	Bactericidal, fungicidal, virucidal	-Fast-acting -Noncorrosive -Nonstaining -Suitable for small surfaces disinfection	-Not sporicidal -Affected by organic matter -No cleaning properties -Deterioration of some instruments -Flammable -Rapid evaporation
Phenols	Denaturation of cytoplasmic and membrane proteins	Leakage of essential metabolites, release of K ⁺ , membrane damage, cytoplasmic coagulation	Bactericidal, fungicidal, virucidal	-Low costs -Not flammable -Nonstaining	-Rapid absorption by porous materials and irritate tissues -Potential depigmentation of skin -Hyperbilirubinemia in infants
Quaternary ammonium compounds	Binding to phosphates and fatty acid chains in phospholipids of cell membrane and DNA	Depolarization, membrane damage, cytoplasmic coagulation	Bactericidal, fungicidal, virucidal (enveloped viruses)	-Good cleaning agents -Surface compatible -Long antimicrobial activity -Low costs	-Not sporicidal -Affected by water hardness -Asthma after benzalkonium chloride exposure -Affected by organic matter
Hydrogen peroxide and peracids	Oxidation of thiol groups to disulfides in proteins	Modification of structural protein and/or alterations in enzyme activities	Bactericidal, fungicidal, virucidal	-Fast-acting -Safe for workers -Non-toxic by-products -Surface compatible -Nonstaining -Odorless -Not flammable	-More expensive compared to other disinfectants -Not sporicidal at low concentrations
Ozone	Oxidation of thiol groups in proteins and interaction with purine and pyrimidine bases	Modification of structural protein, alterations in enzyme activities, and/or DNA damages	Bactericidal, moldicidal, virucidal, protozocidal	-Fast-acting	-Gaseous form not safe -Low stability solutions form -Reacted with organic matter
UV light	chemical modifications of nucleotides caused by photon energy emitted	DNA damages (photohydration, photosplitting, photodimerization)	bacteria, fungi, viruses, spores	-Absence of residues or by-products -Fast-acting	-No microbiocidal effect -Eyes and skin damages for UV irradiation at 254-nm 24

Table 5. Summary of advantages and disadvantages of common surface disinfectant.

Conclusion

- The risk of surface contamination is real
- The relationship between environmental contamination and acquisition is certain (in intensive care)
- The relation between environmental contamination and HAI is more questionable
- Reducing the risk need a bundle of actions including improving hand hygiene and decreasing invasive procedures
- Reducing the consumption of biocides is needed, we need to redefine which situations are at risk and which are not

www.webbertraining.com/schedulep1.php			
August 10, 2022	(South Pacific Teleclass) HEALTHCARE ASSOCIATED PNEUMONIA – WHY SHOULD WE BOTHER AND WHAT CAN WE DO? Speaker: Prof. Brett Mitchell, University of Newcastle, Australia		
August 23, 2022	(European Teleclass) DATA QUALITY INDICATORS IN NATIONAL TB INFECTION CONTROL PROGRAMS: READING BETWEEN THE LINES Speaker: Dr. Eltony Mugomeri, Africa University, Zimbabwe		
September 14, 2022	(South Pacific Teleclass) THE COST-EFFECTIVENESS OF TEMPORARY SINGLE-PATIENT ROOMS TO REDUCE THE RISK OF HAI Speaker: Prof. Nicholas Graves, Duke-NUS Medical School, Singapore		
September 15, 2022	INFLUENZA: WHAT WE CAN EXPECT Speaker: Prof. Rodney Rohde, Texas State University		
	(Furopean Teleclass)		

1 .

Thanks to Teleclass Education **PATRON SPONSORS**

diversey.com

TECHNOLOGIES I Virox.com

