

Infection risks from water

Patient wash-water harbouring micro-organisms

Contaminated cleaning materials

Sinks and drains as reservoirs for infection

Hospital water systems contaminated with *Pseudomonas* and/or *Legionella*

Contamination during medical device reprocessing

Contaminated drinking water

Hierarchy of controls

Infection risks from water

Patient wash-water harbouring micro-organisms

Contaminated cleaning materials

Sinks and drains as reservoirs for infection

Hospital water systems contaminated with *Pseudomonas* and/or *Legionella*

Contamination during medical device reprocessing

Contaminated drinking water

Patient bathing – the grim washbowl...

Prospective study at 3 acute US hospitals, 92 bath basins, including including basins from 3 intensive care units.¹

- Bacteria grew in 98% of samples organisms with the highest positive rates of growth
- Enterococci (54%) VRE (13%)
- Gram-negative organisms (32%)
- Staphylococcus aureus (23%) MRSA (8%)
- Pseudomonas aeruginosa (5%)
- Candida albicans (3%)

44-month study period, a total of 1,103 basins from 88 hospitals in the United States and Canada were sampled. The IPC Team cultured the first 10 basins encountered when entering a unit using a uniform standardized sampling method.²

- Basins were considered clean and ready to use
- Between use standard practice was rinse with tap water and soap
- 62% cultured at least one pathogen (22% with 2 pathogens)
- 45% Gram-negative bacilli
- 35% Vancomycin-resistant enterococci
- 4% methicillin-resistant *Staphylococcus aureus*
- 1. Johnson et al. Am J Crit Care. 2009;18:31-40.
- 2. Marchaim et al. Am J Infect Control 2012;40:562-564.

The skin ain't made for water

15 healthy volunteers received 6 different washing and drying techniques on their forearm.

FIGURE 2. Transepidermal water loss (TEWL) measurements following towel drying using a gentle patting technique. TEWL was measured for 1 minute at baseline, and immediately following washing with either soap and water or water alone, and then drying the area by patting with a towel until the volunteer stated their skin felt dry. The results shown represent the mean values \pm SEM. The values recorded were significantly higher than those obtained in the rest of the study (P < .01) and show that the skin had been left wet.

Voegeli D. J Wound Ostomy Continence Nurs 2008;35:84-90.

Don't wash your hands (with soap and water...!)

52 nurses randomised to either alcohol hand disinfectant or soap and water for hand hygiene for 8 days.

Deterioration in skin condition was less frequently improved and more frequently worsened by both self-assessment, and clinical assessment by a dermatologist in the alcohol hand disinfectant group.

Table 2. Effectiveness of the hand hygiene procedures against contaminants: comparison of bacterial samples before and after procedures

	+→0	0→0		
	Successful	Absence of	+-++	0→+
	decontamination	transient flora	No effect	Contamination
Hand wash with non-medicated soap $(n = 50)$	10	16	4	20
Alcohol-based hand rinse $(n = 52)$	16	25	6	5

Winnefeld et al. Br J Dermatol 2000;143:546-50.

'Waterless' bathing

- Pre-formulated (so don't over-wet)
- Convenient available at the point of care
- Reduced risk of contamination spread
- Can easily add disinfectant activity (usually chlorhexidine)

How does waterless bathing compare with the traditional bed bath?

Systematic review of studies that objectively measured how waterless bathing compares with the traditional bed bath

- Physiological outcomes
 - Waterless bathing resulted in less skin abnormalities and less dry skin that traditional bathing.
- Stakeholder-related outcomes
 - Staff and patients have a significant preference towards waterless bathing.
- Organisational outcomes
 - Waterless bathing was faster than traditional bed bathing.

Groven et al. BMC Geriatr. 2017;17:31.

Waterless/CHG bathing and reduction in BSI

Forest plot showing that chlorhexidine bathing reduced the incidence of hospital acquired bloodstream infections

Musuuza et al. BMC Infect Dis. 2019; 19: 416.

Waterless/CHG bathing and reduction in BSI

The efficacy of daily bathing with chlorhexidine for reducing healthcare-associated bloodstream infections

	Experin	nental	Cont	rol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
1.2.1 CHG Bathing							
Borer et al, 2007	2	1600	15	1923	3.3%	0.16 [0.04, 0.70]	
Camus et al, 2005	6	1991	7	1961	5.3%	0.84 [0.28, 2.52]	<u> </u>
Climo et al, 2009	14	15472	41	15225	10.5%	0.34 [0.18, 0.62]	
Gould et al, 2007	171	6664	264	6899	17.1%	0.66 [0.54, 0.80]	+
Munoz-Price et al, 2009	29	7632	59	6210	13.1%	0.40 [0.25, 0.62]	
Subtotal (95% CI)		33359		32218	49.3%	0.47 [0.31, 0.71]	•
Total events	222		386				
Heterogeneity: $Tau^2 = 0.1$	2: Chi ² =	11.07. 0	df = 4 (P)	= 0.03);	$l^2 = 64\%$		
Test for overall effect: Z =	3.53 (P =	= 0.0004	()				
1.2.2 CHG Impregnated (Cloths						
Bleasedale et al, 2007	9	2210	22	2119	8.2%	0.39 [0.18, 0.85]	_ .
Dixon and Carver, 2010	8	3148	27	3346	8.0%	0.31 [0.14, 0.69]	
Evans et al, 2010	4	1785	15	1904	5.2%	0.28 [0.09, 0.85]	
Holder and Zellinger, 2009	2	2000	12	3333	3.3%	0.28 [0.06, 1.24]	
Montecalvo et al, 2010	27	13864	57	12603	12.8%	0.43 [0.27, 0.68]	
Popovich et al, 2009	2	5610	19	6728	3.4%	0.13 [0.03, 0.54]	
Popovich et al, 2010	17	5799	19	7366	9.8%	1.14 [0.59, 2.19]	
Subtotal (95% CI)		34416		37399	50.7%	0.41 [0.25, 0.65]	•
Total events	69		171				
Heterogeneity: $Tau^2 = 0.1$	9; Chi ² =	12.80. 0	df = 6 (P)	= 0.05);	$l^2 = 53\%$		
Test for overall effect: Z =	= 3.78 (P =	= 0.0002	:)				
Total (95% CI)		67775		69617	100.0%	0.44 [0.33, 0.59]	•
Total events	291		557				
Heterogeneity: $Tau^2 = 0.1$	$3 \cdot Chi^2 =$	26.12.0	f = 11 (1)	P = 0.000	6): $I^2 = 58$	8%	
Test for overall effect: $7 =$	5.39 (P	< 0.0000	1)	5.00			0.01 0.1 1 10 10
Test for subgroup differen	ncos: Chi2	- 0.10	df = 1 (0)	- 0 66)	$1^2 - 0.000$		Favors experimental Favors control

O'Horo et al. Infect Control Hosp Epidemiol 2012; 33:257-267.

Waterless/CHG bathing and reduction in BSI (outside ICU)

Cluster RCT showed no benefit to universal decolonisation outside of critical care areas

• But

- statistically significant reduction in MRSA and VRE in those with an indwelling invasive device
 - IV device, urinary catheter etc

Huang et al. Lancet 2019;393:1205-1215.

CHG bathing and reduction in Acinetobacter baumannii

The efficacy of daily bathing with chlorhexidine for reducing infection / colonization with A. baumannii

Fan et al. J Hosp Infect 2019;103:284-292

CHG bathing and ventilator-associated pneumonia (VAP)

The efficacy of daily bathing with chlorhexidine for reducing VAP

	Experim	nental	Cont	rol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
2.3.1 CHG Bathing							
Camus, 2005	22	1849	28	1830	15.5%	0.78 [0.45, 1.35]	-
Subtotal (95% CI)		1849		1830	15.5%	0.78 [0.45, 1.35]	•
Total events	22		28				
Heterogeneity: Not applicab	le						
Test for overall effect: Z = 0.9	89 (P = 0.3	37)					
2.3.2 CHG Imprignated Clot	h						
Martínez-Reséndez, 2014	25	2806	46	2633	26.1%	0.51 [0.31, 0.83]	
Popovich,2010	24	2452	48	3518	21.7%	0.72 [0.44, 1.17]	
Evans,2010	33	1953	38	1759	22.0%	0.78 [0.49, 1.24]	
Bleasdale, 2007	18	2708	15	2206	9.1%	0.98 [0.49, 1.94]	
Popovich,2009	10	1581	13	2343	5.8%	1.14 [0.50, 2.59]	-
Subtotal (95% CI)		11500		12459	84.5%	0.73 [0.57, 0.93]	•
Total events	110		160				
Heterogeneity: Chi ² = 4.03, (df = 4 (P =	0.40); I ^z	= 1%				
Test for overall effect: Z = 2.5	58 (P = 0.0	010)					
Total (95% CI)		13349		14289	100.0%	0.73 [0.59, 0.92]	•
Total events	132		188				
Heterogeneity: Chi ² = 4.07, (df = 5 (P =	0.54); I ^z	= 0%				
Test for overall effect: Z = 2.1	72 (P = 0.0	007)					Supure experimental Equatro
Test for subaroup difference	es: Chi²=	0.05. df:	= 1 <i>(</i> P = 0	.83). I ² =	:0%		avours experimental Pavours control

Chen et al. J Thorac Dis 2015;7:746-753.

Guy's and St Thomas'

Preventing and treating incontinence related dermatitis

Comparing a perineal care washcloth impregnated with dimethicone 3% versus water and pH neutral soap to prevent and treat incontinence associated dermatitis: a randomised controlled clinical trial; study performed in 11 nursing homes, which were randomised to one of the two interventions

Beeckman et al. J Wound Ostomy Continence Nurs. 2011;38:627-634.

Other potential applications / benefits of waterless bathing

- Time saving^{1,2}
 - Waterless bathing associated with greater satisfaction of nurses in terms of preference and perception of cleanliness
 - Time to use old bathing techniques and products was 10 to 60 mins (mean 24.9 mins).
 - When using the new bathing techniques was 5 to 30 mins (mean 12.0 min), a 48.1% reduction in time taken.
- Evidence that CHG meatal cleansing reduces the risk of CAUTI.³
- Some evidence that CHG bathing prior to surgery reduces the risk of SSI.⁴
- 1. Eigsti JE. Dimens Crit Care Nurs. 2011;30:169-176.
- 2. Groven et al. J Clin Nurs. 2021;30:2234-2245.
- 3. Fasugba, et al. Lancet Infect Dis 2019;19:611-19.
- 4. <u>NICE SSI prevention guidance</u>.

Alternatives to CHG for skin decolonisation

Effectiveness of dilute sodium hypochlorite or Vashe (0.025% hypochlorous acid) in the inactivation of MRSA on (A) a pig skin laboratory model and (B) polystyrene. The figures below show the mean log reduction from 4 MRSA strains.

Chang et al. Infect Control Hosp Epidemiol 2015.

Infection risks from water

Patient wash-water harbouring micro-organisms

Contaminated cleaning materials

Sinks and drains as reservoirs for infection

Hospital water systems contaminated with *Pseudomonas* and/or *Legionella*

Contamination during medical device reprocessing

Contaminated drinking water

Your hospital room can make you sick!

	Decreased acqui	isition	Contr	Control Odds Ratio		Odds Ratio	Odds Ratio
Study or Subgroup	Events (Total	Events	Tota1	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Huang (MRSA)	57	1454	248	8697	16.2%	1.39 [1.04, 1.86]	
Nseir (ESBL producing Gram neg)	8	50	50	461	0.0%	1.57 [0.70, 3.52]	
Huang (VRE)	58	1291	256	9058	16.2%	1.62 [1.21, 2.16]	_ ∎_
Ajao (Klebsiella sp. or Escherichia coli)	32	648	235	8723	14.2%	1.88 [1.29, 2.74]	
Nseir (Pseudomonas)	21	85	61	426	10.4%	1.96 [1.12, 3.45]	-
Drees (VRE)	19	138	31	500	9.7%	2.42 [1.32, 4.43]	
Shaughnessy (Clostridium difficile)	10	91	77	1679	8.3%	2.57 [1.28, 5.15]	
Mitchell (MRSA)	74	884	163	5344	16.4%	2.90 [2.18, 3.86]	
Nseir (Acinetobacter)	16	52	41	459	8.6%	4.53 [2.32, 8.86]	
Total (95% CI)		4643		34886	100.0%	2.14 [1.65, 2.77]	•
Total events	287		1112				
Heterogeneity: Tau ² = 0.09; Chi ² = 21.32, df =	7 ($\mathbf{P} = 0.003$); $\mathbf{I}^2 =$	67%				-	
Test for overall effect: $Z = 5.74$ ($P < 0.00001$)	-						0.1 0.2 0.5 1 2 5 10
							Decreased acquisition Increased acquisition

Mitchell et al. J Hosp Infect 2015;91:211-217.

Contaminated cleaning materials

Antiseptic	Contominant(a)	Cita(a) of microhae	Machanism of contomine	tion/course Author(c) un (ref	aranaa)		
Alcohols E	Chloritextunie	παιзιοπα ριεκεια	blood (psei	chlori	nexidine; low	Maroye et al., 2000 (40)	
Alcohols E	Chlorhexidi	DEIIZAIKUIIIUIII	rseuaomonas EO-1	OTHE	Contaminated (intrinsic)	rialuy et al., 1970 (32)	
Chlorhexidine F	Chlorhexidi Chlorhexidi	chloride Benzethonium chloride	Pseudomonas species	Blood (pseudobacteremia	 cleansing-germicide sol Contaminated (intrinsic s 0.2%) 	lution solution; Dixon et al., 1976 (20)	
		Benzalkonium chloride	Bulkholderia cepacia, Enterobacter species	Blood (pseudobacteremi	 Storage of benzalkonium chloride with cotton/ga improper dilution; stor 	Kaslow et al., 1976 (39) nuze; rage	
Chlorhexidine E Chlorhexidine F	Chlorhexidi cetrimide	Benzalkonium chloride	Bulkholderia cepacia	Bacteremia	bottles infrequently ste Storage of benzalkonium chloride with rayon bal failure to disinfect sque bottles	rilized Frank and Schaffner, lls; 1976 (25) eeze	
Chlorhexidine I	Chlorhexidi cetrimide	Benzalkonium chloride	Serratia marcescens	Intravenous catheters (dogs and cats), other sites	Storage of benzalkonium chloride (0.025%) with gauze	Fox et al., 1981 (24)	
Chlorhexidine F	Chloroxyler	Benzalkonium chloride Benzalkonium chloride	Serratia marcescens Serratia marcescens	Joint CSF	Storage of benzalkonium chloride with cotton/ga Contamination (extrinsic) stock bottle	Nakashima et al., 1987 (53)) of Sautter et al., 1984 (78)	
Chlorhexidine E	Benzalkoni chloride	Be Povidone- Poloxame	iodine Burkholderia r-iodine Pseudomona	s aeruginosa Blo	od (pseudobacteremia) toneal fluid, wound	Intrinsic contamination Intrinsic contamination	Craven et al., 1981 (Parrott et al., 1982 (
	Benzalkoni chloride	Be Povidone-	iodine Burkholderia	cepacia Bloo	od (pseudobacteremia), eritoneal fluid	Intrinsic contamination	CDC, 1989 (14); Jar 1991 (36); Panlilio
Chlorhexidine F	Benzalkoni	Be Povidone-	iodine Pseudomona	s putida Blo	od, catheter tips	Not determined	Bouallègue et al., 20
Chlorhexidine F	chloride	Be Triclosan	Serratia mare	cescens Con	junctiva	Intrinsic contamination	McNaughton et al., 1995 (50)
	chloride	Po ^a CSF, ce	erebrospinal fluid.				
					<i>b. cepacia</i> promerating deionizing resin in the	s on the	

Weber et al. Antimicrobial Agents and Chemotherapy 2007;51:4217–4224.

Guy's and St₂Thomas' NHS Foundation Trust

Contaminated cleaning materials

Hospital-grade disinfectant was found to be contaminated with 9 x 10⁴ cfu of *S. marcescens* and *A. xylosoxidans*.

Fig 1. Agar contact plate cultures of bedrail surface in patient room, before and after surface was cleaned by housekeeper.

Boyce & Havill. Am J Infect Control 2022;50:1926-1301.

Water-free cleaning and disinfection: disinfectant wipes

Cluster-randomised cross-over intervention study of replacing "cloth and bucket" chlorine disinfection with detergent/disinfectant wipes.

Figure 3: Percent of Markers Cleaned, by Room Location and Intervention

*Cleaning points refer to: 1) the right bedrail, 2) the tray of the bedside table, 3) under the binder that contains the fluid balance pages, hanging at the foot of the bed, 4) the nurse's call-on button, and 5) the lamp switch. Results were compared to point 1.

Dadon et al. J Hosp Infect 2023 in press.

Water-free cleaning and disinfection: disinfectant wipes

Cluster-randomised cross-over intervention study of replacing "cloth and bucket" chlorine disinfection with detergent/disinfectant wipes.

Table 1: The impact of locating cleaning/disinfecting wipes in patients' units at multipatient rooms, on various hospitalization's outcomes,

Outcome	Effect (95% CI)	p-value
CLABSI/CAUTI ¹		
IRR	1.6 (0.7, 3.5)	0.3
IRD	12.2/100,000 person-days (-9.7, 34.2)	0.3
CLABSI ¹		
IRR	2.0 (0.5, 8.0)	0.3
IRD	5.2/10,000 person-days (-5.4, 15.7)	0.3
CAUTI ²		
IRR	1.4 (0.8, 2.4)	0.2
IRD	6.7/10.000 person-days (-4.2. 17.7)	0.2
MDRO Contamination ³		
OR	0.7 (0.5, 1.0)	0.06
Predicted Probability Difference	-7.0% (-13.6%, -0.5%)	0.04
MDRO Acquisition ⁴	~°O``	
HR	0.4 (0.2, 1.0)	0.04
Risk Difference	-7.6% (-7.7%, -7.4%)	NA
In-Hospital Mortality ⁵		
IRR	0.8 (0.7-1.0)	0.03
IRD	-19.8/10,000 person-days (-37.9, -1.6)	NA

Shamir Medical Center (20/10/2016-19/01/2018)

1. Calculated using Poisson regression, clustered on a combined variable for unit and study phase

2. Calculated using Poisson regression with a non-clustered model

3. Calculated using a GEE model clustering on unit.

Calculated using a Cox proportional-hazard model. The absolute effect was calculated using the Austin method, which only provides a
point estimate, along with bootstrapped confidence intervals.

5. Calculated using a non-clustered Poisson regression

Dadon et al. J Hosp Infect 2023 in press.

Infection risks from water

Patient wash-water harbouring micro-organisms

Contaminated cleaning materials

Sinks and drains as reservoirs for infection

Hospital water systems contaminated with *Pseudomonas* and/or *Legionella*

Contamination during medical device reprocessing

Contaminated drinking water

Basically, anything wet...

Water reservoirs containing carbapenemase-producing organisms.

Table 2. Water Reservoirs Containing Carbapenem-Resistant Organisms^a

Water Reservoir	Studies, No. (N = 32)	References
Drains/drainage systems	17	Peña et al [35], Kotsanas et al [26], La Forgia et al [28], Betteridge et al [7], Leitner et al [20], Wendel et al [29], Breathnach et al [21], Leung et al [24], Snitkin et al [22], Tofteland et al [32], Vergara-López et al [33], Yomoda et al [9], Stjarne Aspelund et al [12], Odom et al [11], Knoester et al [25], Landelle et al [37], Seara et al [34]
Sink surfaces	14	Betteridge et al [7], Wendel et al [29], Knoester et al [25], Podnos et al [23], Wang et al [27], Biswal et al [8], Hong et al [30], Bukholm et al [31], Kouda et al [38], Landelle et al [37], Dewi et al [10], Kaiser et al [13], Ito et al [14], Leung et al [24]
Faucets	8	Odom et al [11], Knoester et al [25], Majumdar et al [17], Pitten et al [36], Hong et al [30], Bukholm et al [31], Alter et al [15], Leung et al [24]
Water	3	Knoester et al [25], Ambrogi et al [18], Bukholm et al [31]
Inflatable hair wash basin	2	Wendel et al [29], Knoester et al [25]
Sensor mixer taps	1	Durojaiye et al [16]
Water/tea dispenser	2	Wong et al [19], Ito et al [14]
Shower/shower equipment	3	Betteridge et al [7], Leung et al [24], Seara et al [34]
Toilet bowl/brush	2	Breathnach et al [21], Kouda et al [38]

Kizny Gordon et al. Clin Infect Dis. 2017;65:1431-1433.

How often are sinks used for hand hygiene?

- Analysis of activity from 2973 sink videos from 60 days in patient rooms and adjoining bathrooms
- Handwashing was of observed behaviours
- But there were 56 activities where a variety of nutrients, which could promote microbial growth, were disposed of in the sink

Grabowski et al. J Hosp Infect 2018;100:e115-e122.

Outbreaks associated with sink/drain contamination

Table 1. Epide	emiologic Features of 26	Wastewater Drain-Assoc	ciated Outbr	eaks		
Reference	Outbreak Organism	Drain Type (% Positive)	Longest Interval Between Cases	Duration of Outbreak before first direct WWD Intervention	Initial Interventions (months)	Subsequent Interventions
2	MDR Pa	Whirlpool Drain 1/1 (100)	N/A	N/A	EIPI (1 mo)	1. Unit closed 2. Whirlpool system replaced
4	MDR Pa	Sinks 21/124 (17)	2 mo	12 mo	 EIPI Bleach sink decontamination protocol, "no lasting impact" (12 mo) 	ICU closed, sinks removed, splash-minimizing sinks installed
5	MDR Ab	Sink	1 mo	9 mo	1. EIPI 2. Single sink replacement (9 mo)	Weekly bleach system flushing protocol using plugged sink flooding of waste pipes. Sinks negative for ObS at 6 mo. Subsequently, new sinks positive and 19 patients colonized
6	КРС	"Multiple patient sinks"	N/A	N/A	 EIPI Hydrogen peroxide vapor protocol (N/A) 	Multiple environmental interventions
7	ESBL Kp	"Sink and surround"	6 mo	7 mo	BIPI (4 mo)	Sink systems replaced
8	ESBL Ko	Sinks 149/910 (16.4)	7 mo	6 mo	 EIPI Escalating bleach drain disinfection protocols (2) failed (20 mo) 	 Third protocol, thrice daily bleach decontamination decreased positive rate to 4.9%. Rate returned to baseline (16.4%) when compliance decreased. Sink system replacement Continued daily bleach protocol

Carling PC. Infect Control Hosp Epidemiol 2018;39:972-979.

Department of Health

Health Technical Memorandum 04-01: Safe water in healthcare premises

Part B: Operational management

Department of Health

Health Technical Memorandum 04-01: Safe water in healthcare premises

Part C: *Pseudomonas aeruginosa* – advice for augmented care units

Addressing drain contamination

CPE (K. pneumoniae) acquisition and clinical infection halved through improved management of sinks (OR = 0.51 for acquisitons, and 0.29 for clinical cultures) (n=~7,500 pts).

Mathers et al. Clin Infect Dis 2018;67:171-178.

INTIS FOUNDATION Trust

Pre-post study in 5 ICUs in the Netherlands; rates of Gram-negative rod infection/colonisation compared before and after sink removal and the introduction of 'water-free' care.

Patient care-related action	New method with 'water-free' working
Hand washing after visual contamination	'Quick & Clean', (Alpheios B.V., Heerlen, The Netherlands) wipes to remove extensive contamination from hands. Followed by disinfection with alcohol-based hand rub
Medication preparation	Dissolving of medication in bottled water (SPA reine, Spa, Belgium)
Drinks	Bottled water (SPA reine, Spa, Belgium)
Canula care	Disposable materials
Hair washing	Rinse-free shampoo cap (Comfort Personal cleansing products, USA)
Washing	Moistened disposable wash gloves, (D-care, Houten, The Netherlands)
Dental care	Bottled (SPA reine, Spa, Belgium)
Shaving	Electric shaving, or with warm bottled water (SPA reine, Spa, Belgium)

Hopman et al. Antimicrobial Resistance & Infection Control 2017;6:59

Overall rate of Gram-negative rod colonisation rate: were 26.3 GNB/1000 ICU admission days preintervention and 21.6 during the intervention (rate ratio 0.82; 95%CI 0.67-0.99; P = 0.02).

Hopman et al. Antimicrobial Resistance & Infection Control 2017;6:59

Guy's and St Thomas' NHS Foundation Trust

Pre-post study in 2 ICUs in Spain; rates of multidrug-resistant Gram-negative rod infection/colonisation compared before and after sink removal and the introduction of 'water-free' care.

Overall rate of Gram-negative rod colonisation rate: 9.15 per 1000 patient-days before the intervention and 2.20 during. This yielded an RR between both periods of 0.24 (95% CI: 0.17–0.34).

Shaw et al. J Hosp Infect 2018;98:275-281

Pre-post study in 2 ICUs in Spain; rates of multidrug-resistant Gram-negative rod infection/colonisation compared before and after sink removal and the introduction of 'water-free' care.

Shaw et al. J Hosp Infect 2018;98:275-281

Infection risks from water

Patient wash-water harbouring micro-organisms

Contaminated cleaning materials

Sinks and drains as reservoirs for infection

Hospital water systems contaminated with *Pseudomonas* and/or *Legionella*

Contamination during medical device reprocessing

Contaminated drinking wate

Water-free care

Thanks to Martin Kiernan for some slides!

	www.webbertraining.com/schedulep1.php
March 7, 2024	(<u>FREE Teleclass)</u> INFECTION PREVENTION AND CONTROL CERTIFICATION: OBTAINING YOUR ENTRY LEVEL IPC CERTIFICATION THROUGH CBIC Speaker: Jessica Dangles, Certification Board of Infection Prevention and Control
March 14, 2024	COVID-19 PREPAREDNESS – WHAT WENT WRONG? WHAT ARE THE NEXT STEPS? THE POINT OF VIEW OF A BIOMEDICAL ENGINEER Speaker: Dr. Davide Piaggio, University of Warwick, School of Engineering, UK
March 21, 2024	EMERGING FUNGAL INFECTIONS: ENVIRONMENTAL CHANGES BRING ABOUT NEW CHALLENGES Speaker: Dr. Tom Chiller, Centers for Disease Control, Atlanta
April 2, 2024	COVID-19's CHALLENGES TO INFECTION CONTROL DOGMA Speaker: Prof. Michael Klompas, Harvard University
April 11, 2024	(<u>FREE Teleclass)</u> LESSONS LEARNED FROM A FAILED IMPLEMENTATION Speaker: Luize Fábrega Juskevicius, University of São Paulo, Brazil

Thanks to Teleclass Education **PATRON SPONSORS**

