Principais Reações Adversas

Relacionadas ao Uso de Antimicrobianos

Yeo Jim Kinoshita Moon

Farmacêutico Clínico – UTI neonatal e pediátrica – HE Londrina Especialista em Saúde da Criança e do Adolescente – Pequeno Príncipe – Residência Especialista em Saúde – Ênfase Alta Complexidade – UTI Adulto – UFSC - Residência

www.webbertraining.com

Declaração de Conflito de Interesse

Declaro não ter nenhum conflito de interesse com o conteúdo ministrado nesta aula

Agenda

01 Introdução

Conceitos, Classificações,

03

Reações Adversas

Reações infusionais Reações organicas Outras Casos clínicos 02

Reações Alérgicas

Alergias, indentificação, reações cruzadas, dessensibilização

04

Como começar

Onde buscar Etapas para Manejo das RAMs

"É um evento desfavorável que ocorre durante ou após o uso de medicamento ou outra intervenção. É importante ressaltar que para ser considerado um evento adverso, o medicamento ou a intervenção <u>não</u> necessariamente tem relação causal com o evento."

Reação Adversa

"É qualquer resposta prejudicial ou indesejável, não intencional, a um medicamento, que ocorre nas doses usuais para profilaxia, diagnóstico, terapia ou para modificação de funções fisiológicas."

Toda Reação Adversa é um Evento Adverso, mas nem todo Evento Adverso é uma Reação Adversa

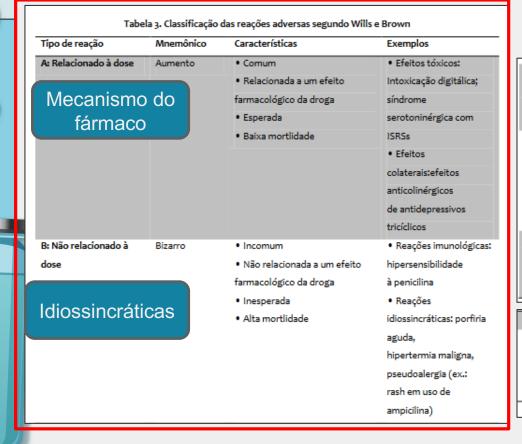
Fonte: https://www.farmacia.ufmg.br/en/conceitos-importantes/#:~:text=EVENTO%20ADVERSO%3A%20%C3%A9%20um%20evento,causal%20com%20o%20evento1.

Farmacovigilância

"A ciência e atividades relativas à identificação, avaliação, compreensão e prevenção de efeitos adversos ou quaisquer problemas relacionados ao uso de medicamentos". OMS

ANÁLISE CAUSUALIDADE DAS RAMS

Definida Provável Possível Improvável Algoritmos


Naranjo

Liverpool

Théophile

BRACKEN, et al. 2017 Doi: 10.1371/journal.pone.0169393 NARANJO, et al. 1981. Doi: 10.1038/clpt.1981.154 THÉOPHILE, et al. 2012. Doi: 10.1016/j.jclinepi.2012.04.015

Classificação

C: Relacionado à dose e	Crônico	• Incomum	Supressão do eixo
ao tempo de uso		Relacionada ao efeito	hipotalâmico-
		cumulativo do fármaco	hipofisário- adrenal por
			corticosteróides
D: Relacionado ao	Atraso	• Incomum	• Teratogênese (ex.:
tempo de uso		Normalmente relacionado à	adenocarcinoma
		dose	associado ao
		 Ocorre ou aparece algum 	dietiletilbestrol)
		tempo	 Carcinogênese
		após o uso do medicamento	 Discinesia tardia
E: Abstinência	Fim do uso	• Incomum	Síndrome de
		Ocorre logo após a suspensão	abstinência à opiáceos
		do medicamento	Isquemia miocárdica
			(suspensão de
			beta- bloqueador)
F: Falha inesperada da	Falha	Comum	Dosagem inadequada
terapia		Relacionado à dose	de anticoncepcional

Doi: 10.1016/S0140-6736(00)02799-9.

oral quando utilizam

indutores enzimáticos

· Freqüentemente causado por

interação de medicamentos

Fonte: Edwards & Aronson (2000)

Classificação – Gravidade e Frequência

	Tabela 4. Classificação das reações adversas de acordo com a gravidade			
Leve	Não requer tratamentos específicos ou antídotos e não é necessária a suspensão do fármaco.			
Moderada	Exige modificação da terapêutica medicamentosa, apesar de não ser necessária a suspensão da droga agressora. Pode prolongar a hospitalização e exigir tratamento específico.			
Grave	Potencialmente fatal, requer a interrupção da administração do medicamento e tratamento específico da reação adversa, requer hospitalização ou prolonga a estadia de pacientes já internados.			
Letal	Contribui direta ou indiretamente para a morte do paciente. Fonte: Pearson (1994)			

Muito comum	>1/10	>10%
Comum (frequente)	>1/100 e <1/10	> 1% e < 10%
Incomum (Infrequente)	>1/ 1.000 e <1/100	> 0.1% e < 1%
Rara	>1/ 10.000 e <1/ 1.000	> 0.01% e < 0.1%
Muito rara	<1/10.000	<0.01%

Reações aos antimicrobianos

Do antibiotics have side effects?

Any time antibiotics are used, they can cause side effects. However, antibiotics can save lives. When you need antibiotics, the benefits outweigh the risks of side effects. If you don't need antibiotics, you shouldn't take them because they can cause harm.

Common side effects of antibiotics include:

Get immediate medical help if you experience severe diarrhea. It could be a symptom of a *C. difficile* infection (also called *C. diff*), which can lead to severe colon damage and death. People can also have severe and life-threatening allergic reactions.

If you experience side effects, follow up with your healthcare professional.

To learn more about antibiotic prescribing and use, visit www.cdc.gov/antibiotic-use or call 1-800-CDC-INFO.

1 out of 5
medication-related visits to the emergency room are from reactions to antibiotics.

Antibióticos salvam vidas, mas não são isentos de efeitos adversos

1 a cada 5 visitas ao
Pronto Atendimento
por causa de
medicamentos está
relacionado a
reações ao antibiótico

Reações aos antimicrobianos

JAMA Internal Medicine | Original Investigation

Association of Adverse Events With Antibiotic Use in Hospitalized Patients

Pranita D. Tamma, MD, MHS; Edina Avdic, PharmD, MBA; David X. Li, BS; Kathryn Dzintars, PharmD; Sara E. Cosgrove, MD, MS

Estudo coorte – 1488 adultos que usaram antimicrobianos

Até 30 dias após o uso – RAM Até 90 dias após uso - *Clostridium difficile*

20% dos pacientes – pelo menos 1 RAM 7 casos de *Clostridium difficile*

- 1- Gastrointestinal (42%)
- 2- Renais (24%)
- 3 Hematológicas (15%)

A Cada 10 dias de uso de antibiótico aumentou 3% o risco de Efeito Adverso

Reações de Hipersensibilidade

Table 1. Summary	of immune-mediated	d antibiotic hypersensitivit	v reactions [1-	-71.

	Туре	Description	Pathogenesis	Onset of Reaction	Typical Clinical Findings	Commonly Associated Antibiotics
	I (Immediate)	IgE-mediated hypersensitivity	Antibiotic-specific IgE binds to Fc-epsilon-RI receptors on mast cells and basophils. Subsequent antibiotic exposure leads to mast cell and basophil degranulation	<1 h	Anaphylaxis, hives, angioedema, N/V, abdominal pain, SOB, wheezing, anxiety, confusion, chest pain, palpitations, syncope, cardiac arrest	Cephs, FQs, PCNs,
-	II (Delayed)	Antibody-mediated hypersensitivity	Antibiotic binds to WBC, RBC, or platelet and acts as antigen leading to antibody (usually IgG or complement) mediated cell destruction	7–14 d	Hemolytic anemia, thrombocytopenia, neutropenia	Cephs, PCNs, SMX/TMP
	III (Delayed)	Immune complex mediated hypersensitivity	Antibiotic and IgG/IgM bind to form immune complex activate complement	7–14 d	Serum sickness *, vasculitis	Cephs (esp cefaclor), cipro, PCNs, SMX/TMP
	IV (Delayed)	Delayed type hypersensitivity	Antigen specific T-cell activation			
		IVa	Monocytic inflammation (Th1 and IFN-γ)	10–15 d	Allergic contact dermatitis	Topical neomycin, bacitracin, polymyxin
		IVb	Th2-mediated eosinophilic inflammation	2–8 wk (for DRESS)	DRESS	PCNs, Cephs, Dapsone, MinocyclineSMX/TMP, Vanco
		IVc	CD8 T cell-mediated cytotoxicity	4–28 d	SJS, TEN	FQs, Nevirapine, PCNs, SMX/TMP
		IVd	T-cell-mediated neutrophilic inflammation	24–48 h	AGEP	Ampicillin, Antifungals, FQs, SMX/TMP

AGEP: Acute generalized exanthematous pustulosis. Cephs: cephalosporins. d: days. DRESS: drug rash with eosinophilia and systemic symptoms. FQ: flouroquinolones. h: hours. N/V: nausea/vomiting. PCNs: penicillins. RBC: red blood cell. WBC: white blood cell. SJS: Steven Johnson Syndrome. SMX/TMP: sulfamethoxazole/trimethoprim. SOB: shortness of breath. TEN: Toxic epidermal necrolysis. Vanco: vancomycin. wk: week. * Antibiotics in this group mimic serum sickness and cause a serum sickness-like reaction that is very similar based on symptoms but does not involve the production of immune mediated complexes.

Anafiláticas

Hipersensibilidade Tardia Ex: Síndrome de Steven Johnson

Reações Alérgicas

Antimicrobial Stewardship & Healthcare Epidemiology (2022), 2, e86, 1–4 doi:10.1017/ash.2022.55

Concise Communication

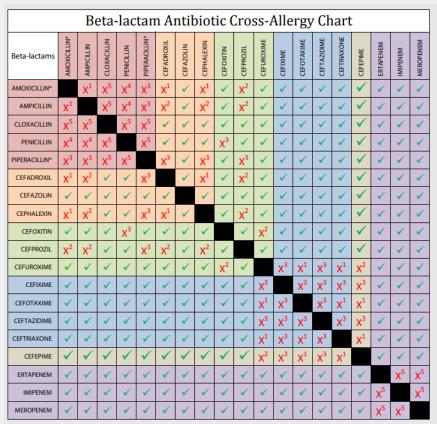
Impact of an inpatient nurse-initiated penicillin allergy delabeling questionnaire

Hilary Bediako BA^{1,a}, Lauren Dutcher MD, MSCE^{2,3,a} , Aditi Rao PhD, RN^{4,5} , Kristen Sigafus MSN, RN⁴, Christina Harker BSN, RN⁴, Keith W. Hamilton MD² and Olajumoke Fadugba MD⁶

¹University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, ²Division of Infectious Diseases, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, ³Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, ⁶Department of Nursing, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, ⁶University of Pennsylvania School of Nursing, Philadelphia, Pennsylvania and ⁶Division of Pulmonary, Allergy and Critical Care, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania

Desmarcação da alergia

Papel importante da enfermagem na avaliação das alergias aos antibióticos

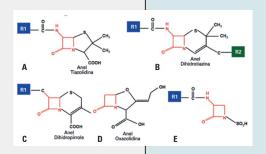

Uso de questionário para avaliação da alergia

14% (33/235) pacientes eram elegíveis para desmarcação da alergia

Realizado pelo Enfermeiro líder e validado pelo médico especialista

Melhora a segurança e eficácia do tratamento, ao mesmo tempo que promove o uso racional dos antibióticos a partir do não escalonamento da terapia devido a "alergia"

Reações Alérgicas – Reações Cruzadas

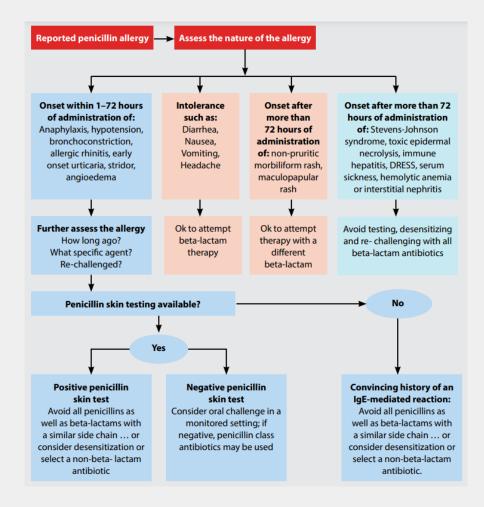


^{*} Also applies to beta-lactamase inhibitor combinations (amoxicillin-clavulanate and piperacillin-tazobactam)

AVOID ALL beta-lactam antibiotics if:

- · ICU admission related to allergy
- Delayed beta-lactam antibiotic allergy causing:
- interstitial nephritis
- hepatitis
- hemolytic anemia
- Delayed severe skin allergic reactions:
- Stevens-Johnson syndrome
- toxic epidermal necrolvsis
- exfoliative dermatitis
- acute generalized exanthematous pustulosis (AGEP)
- drug reaction with eosinophilia and systemic symptoms (DRESS)

LEGEND: Penicillins 1st Generation Cephalosporins 2nd Generation Cephalosporins 3rd Generation Cephalosporins 4th Generation Cephalosporins Carbapenems Different structure. CONSIDERED SAFE TO PRESCRI Reaction likely based on side chain: Same side chain - clinical evidence of cross reaction. DO NOT PRESCRIBE Same side chain - Theoretical risk of cross reaction, no clinica studies. DO NOT PRESCRIBE Similar side chain - Potential for cross reaction. DO NOT PRESCRIB Reaction likely based on Beta-lactam ring Clinical evidence of cross reaction. DO NOT PRESCRIBE Theoretical risk of cross reaction, no clinical studies.



Reações Relacionadas Ao anel aromático

Reações Relacionadas A cadeia lateral

Reações Alérgicas – Reações Cruzadas

Qual a Natureza da alergia?

Quanto tempo?
Qual composto?
Teve outro contato?

Há teste de alergia?

Avaliar a cadeia lateral

Reações Alérgicas

As perguntas a seguir devem ser realizadas pelos seguintes profissionais: médico, farmacêutico e enfermeiro.

- Para a identificação de alergia perguntar:
 - O paciente é alérgico?
 - O paciente apresentou alergia ao que (medicamento ou produto)?
 - ☐ Qual tipo reação o paciente apresentou (sinais e sintomas)?
 - ☐ Tempo que ocorreu a reação após a exposição?
 - ☐ Após a reação o paciente teve contato novamente com esse produto ou medicamento?
 - ☐ Qual foi o tipo de reação que o paciente apresentou no segundo contato?
 - ☐ A quanto tempo ocorreu essa reação (ex: meses ou anos)?
 - ☐ Algum profissional de saúde orientou a não utilizar esse medicamento?

Dessensibilização

- 1 Não há nenhuma medicamento alternativo;
- 2 –o medicamento envolvido é mais eficaz ou está associada a menos EA;
- 3- medicamento tem um mecanismo único de ação. OBS: Indicado com precaução em pacientes de alto risco, e absolutamente contraindicado em reações tardias graves, com risco de vida. Ex; Síndrome Stevens- Johnson.

Administração gradual do medicamento

Pré medicação - Difenidramina -Dexametasona/ Hidrocortisona

Table 5. An example of the 12-step desensitization protocol using a final dose of 1000 mg.

			A			
Sol	ution:	Total `	Volume	Conce	ntration	Dose
Solu	ution 1	100) mL	0.100	mg/mL	10 mg
Solı	ution 2	100) mL	1.00 r	mg/mL	100 mg
Solu	ution 3	100) mL	10.00	10.00 mg/mL 10	
			В			
Step	Solution#	Rate (mL/hr)	Time (minutes)	Volume (mL)	Dose (mg)	Cumulative dose (mg)
1	1	2	15	0.5	0.050	0.050
2	1	5	15	1.25	0.125	0.175
3	1	10	15	2.5	0.25	0.425
4	1	20	15	5	0.5	0.925
5	2	5	15	1.25	1.25	2.175
6	2	10	15	2.5	2.5	4.675
7	2	20	15	5	5	9.675
8	2	40	15	10	10	19.675
9	3	10	15	2.5	25	44.675
10	3	20	15	5	50	94.675
11	3	40	15	10	100	194.675
12	3	80	60.40	80.53	805.325	1000

Data adapted from [30,33].

CHASTAIN, D.B., et al 2019. DOI: 10.3390/pharmacy7030112

Antibiotic desensitization as a potential tool in antimicrobial stewardship programs: retrospective data analysis and systematic literature review

Alicia Rodríguez-Alarcón 👵, Jaime Barceló-Vidal, Daniel Echeverría-Esnal, Luisa Sorli, Roberto Güerri-Fernández,

Pages 1491-1500 | Received 24 May 2022, Accepted 05 Sep 2022, Published online: 12 Sep 2022

66 Cite this article
☐ https://doi.org/10.1080/14787210.2022.2122443
☐ Check for updates

97% das dessensibilizações foram um sucesso Estratégia a ser considerada pelo time de **Stewardship**

Caso Clínico

Homem 65 anos, 100 kg internado há 25 dias na UTI começou apresentar piora clínica (febre, taquicardia, taquipneia, rebaixamento do nível de consciência). Coletado hemoculturas com crescimento de *Staphylococcus aureus* resistente a oxacilina (MRSA), iniciado vancomicina dose de ataque 25mg/kg (2500mg) seguida da dose de manutenção 15mg/kg (1500mg) 12/12h. Tempo de infusão = 2 horas.

Em 15 minutos da infusão da dose de ataque apresentou rubor, eritema e prurido em face e na metade superior do tronco.

O que houve? E o que justifica essa reação?

Reações Infusionais

Vancomicina

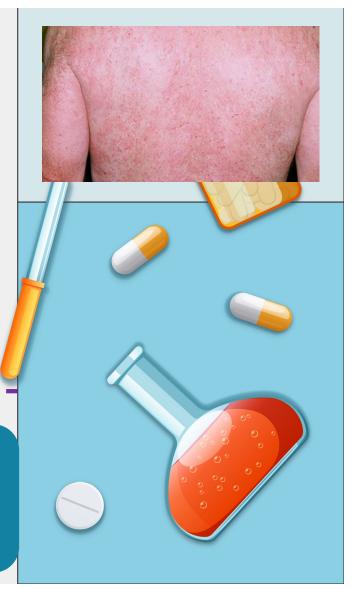
Infusão < 15mg/min (30 min a cada 500mg) Cuidado na dose de ataque

Síndrome do Homem Vermelho (liberação de histamina

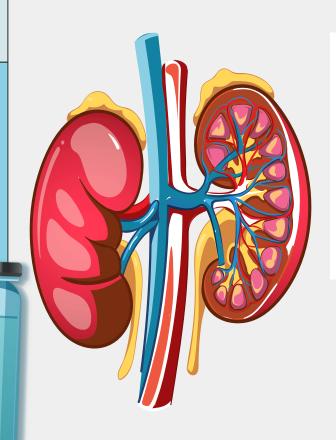
Anfotericina B desoxicolato

2-6 horas

Pré medicação – 30-60 min antes


-Hipotensão, hipocalemia, arritmias, febre e choque

Case Report


Infusion-Related Reaction Following Daptomycin Two-Minute Rapid Intravenous Administration

> Celeste R. Caulder, PharmD'; Aaron Sloan, PharmD (Candidate)'; Yasir Ahmed, MD[†]; and P. Brandon Bookstaver, PharmD, BCPS (AQ-ID), AAHIVP'

2 horas após administração
 - Vermelhidão e sensação
 de calor no rosto, pescoço
 e parte superior do tórax

Nefrotoxicidade

Creatinina sérica

Creatinina acima de 0,3 mg/dL **ou** Aumento maior que 1,5 a 2,0 vezes (em relação ao basal)

Estágio 2

Estágio 1

Aumento maior que 2,0 a 3,0 vezes (em relação ao basal)

Estágio 3

Aumento maior que 3,0 vezes (em relação ao basal) **ou** Creatinina acima de 4,0 mg/dL com elevação aguda de 0,5 mg/dL **ou** Instituição de suporte renal artificial

Débito urinário

Menor que 0,5 mL/kg/h por 6 a 12 horas

Menor que 0,5 mL/kg/h por mais de 12 horas

Menor que 0,3 mL/kg/h por mais de 24 horas **ou** Anúria por 12 horas

IRA x Temporalidade de uso do antimicrobiano

https://blog.medcel.com.br/post/injuria-renal-aguda

LEVEY, Andrew S. *et al.* Nomenclature for kidney function and disease: report of a Kidney Disease: Improving Global Outcomes (KDIGO) Consensus Conference. **Kidney International**, [s. *l.*], v. 97, n. 6, June 2020, p. 1117-1129. Disponível em: https://www.kidney-international.org/article/S0085-2538(20)30233-7/fulltext. Acesso em: 29 jun. 2023.

Nefrotoxicidade

Group	Medications	Mechanism	Clinical Manifestation
Antivirals	Tenofovir	Direct proximal tubule cytotoxicity	Fanconi-like syndrome ATN
	Indinavir	Intratubular crystal deposition	Nephrolithiasis
	Acyclovir	Intratubular crystal deposition	Nephrolithiasis
		Direct tubular cytotoxicity	AIN
	Foscarnet	Direct proximal tubule cytotoxicity	ATN
		Intraglomerular crystal deposition	Acute glomerulonephritis
		Downregulation of aquaporin-2	Nephrogenic diabetes insipidus
	Interferon	Direct proximal tubule cytotoxicity	ATN
		Podocyte injury	FSGS
		Enhanced cellular immunity	TMA
Antibiotics	Aminoglycosides	Direct proximal tubule cytotoxicity	Fanconi-like syndrome
		Direct distal tubule cytotoxicity	ATN
			Electrolyte wasting tubulopathy
	Beta-lactams	Direct proximal tubule cytotoxicity	ATN
		Glomerular injury	Acute glomerulonephritis
	Trimethoprim/Sulfamethoxazole	Impaired creatinine secretion	AIN
		ENaC inhibition	Falsely elevated creatinine
			Hyperkalemia
	Fluoroquinolones	Tubular damage	AIN
	·	Enhanced cellular immunity/structural	TMA
		similarity to quinine	
	Vancomycin	Direct proximal tubule cytotoxicity	ATN
	,		AIN
	Daptomycin	Rhabdomyolysis	Myoglobin-induced tubulopathy
	• •		Mild ATN
	Polymyxins	Direct proximal tubule cytotoxicity	ATN
Antifungal	Amphotericin B	Direct distal tubule cytotoxicity	Renal distal tubular acidosis
0	Caspofungin	Direct distal tubule cytotoxicity	Mild distal tubulopathy

Abbreviations: AIN, acute interstitial nephritis; ATN, acute tubular necrosis; ENaC, epithelial sodium channels; FSGS, focal and segmental glomerular sclerosis; TMA, thrombotic microangiopathy.

Monitorar:

- Creatinina e Ureia
- Diurese
- Nível sérico do ATB (vancomicina e aminoglicosídeos)
- Uso de mais de um medicamento nefrotóxico

Nefrotoxicidade

Manejo Vancomicina:

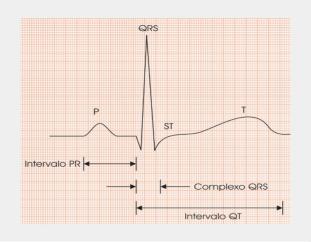
- Aumento do tempo de infusão – Contínua* (reduz Picos de concentrações altas)
 - Ajustar de dose ou frequência pelo nível sérico

Manejo Aminoglicosídeo:

Evitar administrar > 1xdia (ex: q12h; q8h) – acumulo do AMNG
 Ajustar dose ou frequência pelo nível sérico

Manejo Anfotericina B desoxicolato:

- Aumentar tempo de infusão* -Pré-infusão de 1 L de SF 0,9% antes da administração - Ajustar dose

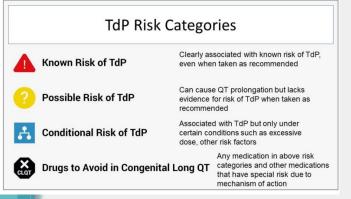

BARI, A.A. et al. 2011. DOI: 10.1016/j.jsps.2010.11.001 KAN, W.C. et al. 2022. DOI: 10.3390/ ijms23042052

LE, J. et al. 2015 DOI: 10.1093/jpids/piu110

NOVOLA, J.M.L., 2011. DOI: 10.1038/ki.2010.337

*Incompatibilidades

Cardiotoxicidade

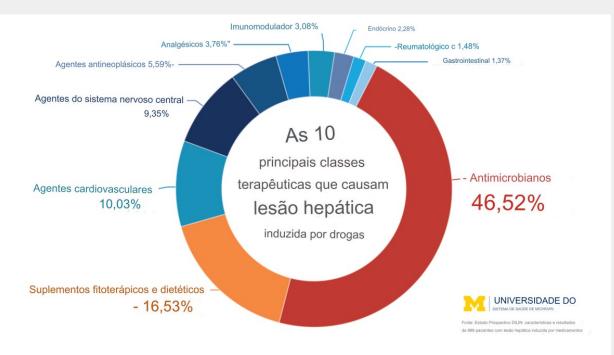


MEDICAMENTOS QUE PODEM PROLONGAR IQT

Antibacterianos Azitromicina (KR), Ciprofloxacino (KR), Claritromicina (KR), Eritromicina (KR), Levofloxacino (KR) Metronidazol (CR), Norfloxacino (PR), Piperacilina/Tazobactam (CR)

Antifúngicos Anfotericina B (CR), Cetoconazol (CR), Fluconazol (KR), Itracozazol (CR), Voriconazol (CR)

Medications with Risk of Torsades

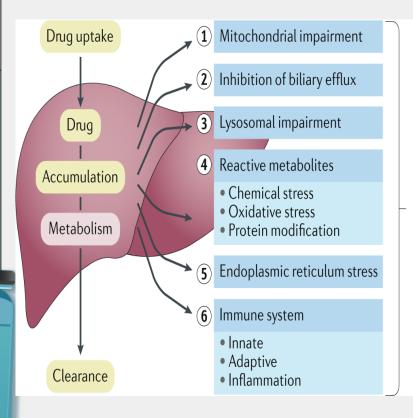

- QTc > 450ms;
- Δ QTc > 60ms ou aumento de 10% em relação ao basal.

Monitorar:

- Eletrocardiograma
- Alargamento do intervalo QTEletrólitos (Ca , K e Mg)
 - Função renal e hepática

https://crediblemeds.org/application/files/8816/1580/0172/QTc_CDS_Module_Three_31_Aug_2020.pdf

Hepatotoxicidade



Características e resultados de 899 pacientes com lesão hepática induzida por medicamentos: Estudo Prospectivo DILIN.

CHALASANI, N. et al. 2015. DOI: 10.1053/j.gastro.2015.03.006

Hepatotoxicidade

Diverse clinical presentations of DILI

- Acute fatty liver with lactic acidosis
- Acute hepatic necrosis
- Acute liver failure
- Acute viral hepatitis-like liver injury
- Autoimmune-like hepatitis
- Bland cholestasis
- Cholestatic hepatitis
- Cirrhosis
- Immuno-allergic hepatitis
- Nodular regeneration
- Nonalcoholic fatty liver
- Sinusoidal obstruction syndrome
- Vanishing bile duct syndrome

Monitorar:

- Bilirrubinas
- Transaminase (ALT; AST)
- Enzimas Canaliculares
 (Fosfatase Alcalina e Gama GT)
- Sinais e sintomas como icterícia, dor abdominal, colúria...

Ajuste:

- Dose/ frequência
- Escolha do tratamento

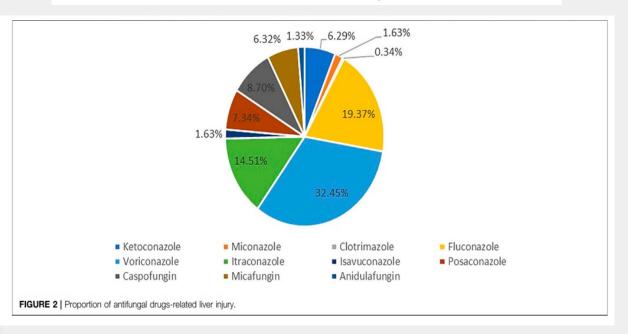
WEAVER, R.J. et al 2019. DOI: 10.1038/s41573-019-0048-x

Hepatotoxicidade

Table 1. Patterns of Hepatic Damage Causes by Antibiotics

Antibiotic	Pattern¹
Betalactams	
Amoxicillin	Hepatocellular, hepatic granulomas
Ampicillin	Cholestatic, vanishing bile duct syndrome.
Amoxicillin/clavulanate	Cholestatic, hepatocellular mixed, hepatic granulomas
Cloxacillin Flucoxacillin	Cholestatic Cholestatic, protracted cholestasis, vanishing bile duct syndrome.
Penicillin G, V	Hepatocellular, hepatic granulomas
Cephalosporins	Cholestatic
Ceftriaxone	Biliary sludge
Tetracyclines	Fatty liver, cholestatic hepatitis, hepatocellular, fulminant hepatic failure
Minocycline Doxicycline	Autoimmune hepatitis, chronic active hepatitis, liver failure Cholestatic
Macrolides	
Erythromycin	Cholestatic, vanishing bile duct syndrome, liver failure
Azithromycin	Cholestatic
Clarithromycin	Cholestatic, acute liver failure
Telithromycin	Hepatocellular, fulminant hepatic failure

Sulphonamides	Cholestatic, mixed, hepatic granulomas, liver failure, vanishing bile duct syndrome
Sulphomethoxazole and Trimethoprim-	Cholestatic, vanishing bile duct syndrome.
Fansidar R (pyrimethamine-sulphadoxine) Hepatocellular, hepatic granulomas, fulminant hepatic failure	
Dapsone	Asymptomatic rise in transaminases.
Quinolones	
Ciprofloxacin	Cholestatic, hepatocellular, fulminant hepatic failure, vanishing bile duct syndrome
Norfloxacin	Hepatocellular, cholestatic, hepatic granulomas
Trovafloxacin	Fulminant hepatic failure
Other Antibiotics	
Nitrofurantoin	Hepatocellular, cholestatic, hepatic granulomas, chronic hepatitis
Clindamycin	Mixed, cholestatic


Tetraciclinas Macrolídeos Quinolonas Beta lactâmicos

ROBLES, M el atl. 2010. DOI: 10.2174/157488610791698307

Hepatotoxicidade – Antifungico

Antifungal Drugs and Drug-Induced Liver Injury: A Real-World Study Leveraging the FDA Adverse Event Reporting System Database

Zhi-Xuan Zhou^{1,2†}, Xue-Dong Yin^{1,2†}, Yu Zhang^{1,3†}, Qi-Hui Shao^{1,2}, Xin-Yu Mao^{1,2}, Wen-Juan Hu¹, Yun-Lin Shen^{4*}, Bin Zhao^{5*} and Zhi-Ling Li^{1*}

75% - Azólicos

- 1- Voriconazol
- 2- Fluconazol
- 3- Itraconazol
- 4- Clotrimazol

Hepatotoxicidade - Antifúngicos

Azole Drug	Hepatic Injury Pattern	Approximate Incidence of Elevations in Liver Function Tests (LFIs) (%)	Toxicity Requiring Discontinuation of the Drug	Comments
Fluconazole	Cholestatic	1-10%	elevations in LFTs that are serious enough to warrant discontinuation of the drug appeared in 0.7% of patients	Most elevations in LFTs are transient and are resolved upon drug discontinuation. There are mixed data regarding the dose-dependency of hepatotoxicity.
Itraconazole	Cholestatic	1-17.4%	1.5% of patients experience elevations in LFTs that are serious enough to warrant drug discontinuation.	Elevations in LFTs may appear between 4 – 10 weeks. The hepatocellular model of toxicity may imply severe toxicity. The dose or duration dependence of itraconazole-induced hepatotoxicity is unclear.
Ketoconazole	Hepatocellular	3 - 17.5%	1 in 1,000 – 3,000 patients experiences elevations in LFTs severe enough to warrant drug discontinuation.	Most LFTs elevations are transient and resolved upon drug discontinuation, but severe hepatotoxicity risk seems to be the highest among azoles.
Posaconazole	Hepatocellular	1-10%	Elevations in LFTs that are rarely severe warrant discontinuation of the drug.	Elevations in LFTs are generally resolved within two weeks after drug discontinuation.
Voriconazole	Mixed, hepatocellular, and cholestatic	12 – 19%	The incidence of fulminant hepatic failure is rare.	Usually, within the first 10 - 28 days of therapy, toxicity appears and may be related to the concentration of the drug.

RAKHSHAN, A. et al. 2023 DOI: 10.5812/ijpr-130336

Melhora com a descontinuação do medicamento

Neurotoxicidade

Table 1

Neurotoxicity associated with aminoglycosides and all beta-lactams, their mechanisms of neurotoxicity and risk factors

Antibiotic class	Number of publications	Neurotoxic effects	Mechanism of neurotoxicity	Risk factors
Aminoglycosides: 1. Gentamicin 2. Streptomycin 3. Amikacin 4. Tobramycin 5. Neomicin 6. Kanamycin	5: retrospective case reviews; case series; case reports	Ototoxicity-class effect Peripheral neuropathy; encephalopathy (gentamicin) Neuromuscular blockade-class effect	Activation of NMDA receptors Lysosomal abnormality; Axonal loss; Inflammatory response Inhibition of pre-synaptic quantal release of acetylcholine and binding of drug to postsynaptic receptors	Increased CNS permeability Intrathecal administration
Cephalosporins: High risk agents: Cefazolin Cefazolin Cefazolis Ceftazidime Cefoperazone Cefoperazone Cefopime Low risk agents: Cephalexin Cefatoxime Cefatoxime Cefatoxime Cefatoxone	24- Case reports; retrospective reviews; review articles	Encephalopathy with Triphasic waves on EEG Tardive seizures Seizures NCSE Myoclonus Asterexis	postsynaptic receptors Inhibition of GABA-A release; Increased glutamate; Induction of endotoxins; Cytokine release	Renal failure Prior CNS disease Older age Excess dosage
Beta-lactams- Penicillins: 1. Benzylpenicillin 2. Penicllin G 3. Pipercillin 4. Ticarillin 5. Ampicillim 6. Amoxacillin 7. Oxacillin	4: Case reports; case series	Seizures Tardive seizures Encephalopa Tremors	Inhibition of GABA-A receptors	Renal failure; low birth weight-neonates
Beta-lactams Carbapenems 1. Imepenem 2. Meropenem 3. Paripenem 4. Ertapenem 5. Doripenem 6. Ceftaroline	4: Case reports	Encephalopathy Seizures Myoclonus Headache	Inhibition of GABA-A receptors; Possibly binding of glutamate	Renal failure

Penetração no SNC

- Ex: Aminoglicosideos – administração intratecal

RESEARCH

Cefepime-induced neurotoxicity: a systematic review

Fatores de Risco

- Insuficiência Renal
- Doença prévia no SNC
- Idoso
- Excesso de dose

GRILL, M.F; MAGANTI, R.K. 2010 DOI: 10.1111/j.1365-2125.2011.03991.x

Neurotoxicidade

Antibiotic class	Number of publications	Neurotoxic effects	Mechanism of neurotoxicity	Risk factors
Tetracyclines	1: Review article	Cranial nerve toxicity; Neuromuscular blockade; Intracranial hypotension		
Trimethoprim- Sulfametaxazole	8: case reports	Transient psychosis; encephalopathy; aseptic meningitis	CNS penetration	Advancing age; Immunocompromized
Macrolides.azalides: 1. Erythromycin 2. Clarithromycin 3. Azithromycin, 4. Dirithromycin	6: Case reports; Review articles	Ototoxicity	Damage to Cochlea	
Quinolones: 1. Ciprofloxacin 2. Norfloxacin 3. Ofloxacin 4. Gemifloxacin 5. Levofloxacin 6. Gatifloxacin	5: Case reports; case series	Psychosis Encephalopathy Seizures NCSE Orofacial dyskinesias Action myoclonus Ataxia Dysarthria Chorea	Inhibition of GABA-A receptors; Activation of NMDA receptors	Advancing age; Impaired renal function; Increased permeability of blood-brain barrier
Oxazolidinones 1. Linezolid	4: case reports; case series	Encephalopathy Bells palsy Optic neuropathy	Not known	
Streptogramins: 1. Dalforpistin-quinupristin	1: case report	Headache		
Polymixins 1. Polymyxin B 2. Colistin	5: case reports; case series; retrospective reviews	Chemical Arachnoiditis Seizures Diplopia Ataxia Paresthsias Polyneuropathy Myasthenia-like syndrome	High affinity binding to CNS Blocking acetylcholine receptors; Prolonged depolarization via calcium depletion	Co-administration of narcotics, anaesthetics, muscle relaxants; Myasthenia gravis Renal failure Cystic fibrosis
Others: 1. Clindamycin 2. Vancomycin 3. Nitrofurantoin 4. Chloramphenicol 5. Metronidazole	10: case reports; case series	Tardive dyskinesia; Extrapyramidal syndrome Ventriculitis Polyneuropathy, benign intracranial hypotension Optic neuritis Ataxia Dysphagia Peripheral neuropathy	CSF inflammatory response Cerebellar/brain stem lesions Axonal damage	Impaired renal function

Idosos:

Quinolona
Sulfametoxazol + Trimetoprom
(Bactrim)

Monitorar:

Sinais e sintomas de neurotoxicidade: convulsões, rebaixamento do nível de consciência, fraqueza muscular, perda de memória, visão ou raciocínio, ...

Manejo:

Evitar medicamento quando tem fatores de risco
Reduzir dose
Considerar outros antibióticos

GRILL, M.F; MAGANTI, R.K. 2010 DOI: 10.1111/j.1365-2125.2011.03991.x

Ototoxicidade

Aminoglicosídeos
Vancomicina
Macrolídeos
Cloranfenicol

Monitorar:
Audiometria
Impedanciometria/ BERA

- Dose Acumulada
- Duração da Terapia

LEIS, J.A.; RUTKA, J.A.; GOLD, W.L. 2015. DOI: 10.1503/cmaj.140339

RYBAK, L.P.; RAMKUMAR, V.; MUKHERJEA, D. 2021 DOI: 10.3389/fneur.2021.652674

Hematológica – Supressão Celular

Anemia (nível de hemoglobina <10 g/dL) Leucopenia (contagem de leucócitos <4.500 células/µL) Trombocitopenia (contagem de plaquetas <150 × 103 /µL)

Table I. Selected examples of drugs associated with idiosyncratic (type B) drug-induced myelosuppression ⁽¹⁻⁴⁾				
Drug class	Example(s)	Category of drug-induced myelosuppression	Comments	
Antibacterials	Chloramphenicol	Aplastic or sideroblastic anaemia	Causative link between chloramphenicol eye drops and aplastic anaemia is controversial	
	Isoniazid	Sideroblastic anaemia	Exacerbated by pyridoxine (vitamin B ₆) deficiency	
	Linezolid	Sideroblastic cytopenia		
	Trimethoprim	Megaloblastic anaemia	Mechanism: inhibition of dihydrofolate reductase	
	Zidovudine	Megaloblastic anaemia	Mechanism: interference with DNA synthesis	

Reversible Myelosuppresion With Prolonged Usage of Linezolid in Treatment of Methicillin-Resistant Staphylococcus aureus

Sanjana Sharma ¹, Arshi Syal ², Monica Gupta ¹, Anita Tahlan ³, Baldeep Kaur ^{4, 1}

Research Article

Myelosuppression in Patients with Prolonged use of Piperacillin/Tazobactam

Ahmet Riza Sahin,¹ Ali Muhittin Tasdogan²

Monitorar:

- Hemograma
- Sinais e sintomas de sangramento (plaquetopenia)
- Função renal (Linezolida eliminada 30% via renal)

Manejo:

- Ajustar dose/frequência
- Trocar terapia/ suspender

Drugs Ther. Perspect 20, 23–26 (2004). https://doi.org/10.2165/00042310-200420100-00008

Miotoxicidade

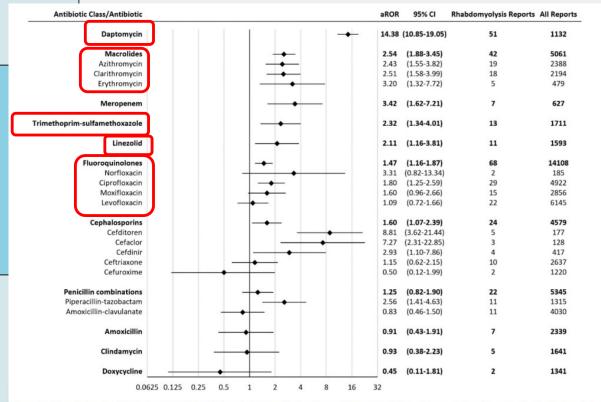


Figure 2. Adjusted Reporting Odds Ratios (aRORs) for rhabdomyolysis with antibiotics. CI = confidence interval. All statins were significantly associated with rhabdomyolysis. Rhabdomyolysis RORs (95% CI) for statins range from atorvastatin 15.09 (13.77-16.53) to simvastatin 76.29 (70.92-82.06).

Research Paper

Rhabdomyolysis Associations with Antibiotics: A Pharmacovigilance Study of the FDA Adverse Event Reporting System (FAERS)

Chengwen Teng¹.2[™], Courtney Baus¹.2, James P. Wilson³, Christopher R. Frei ¹.2, ⁴.5

Muscle Pain Associated with Daptomycin

Shailaja R Veligandla, Kathy R Louie, Mark A Malesker, and Philip W Smith

Monitorar:

- Sinais de miopatia (fraqueza, dor muscular...)
- Creatinofosfoquinase (CPK)
- Uso de outros medicamentos que podem causar miopatia (estatinas)
- Função Renal

Manejo:

- Ajustar dose/frequência
- Trocar terapia

Bloqueio Neuromuscular

Case Report: Respiratory paralysis associated with polymyxin B therapy

Yachan Ning¹, Yanqi Chu², You Wu², Ying Huang³, Chunmei Wang^{1*} and Li Jiang^{1*}

SOME EFFECTS OF THE AMINOGLYCOSIDE ANTIBIOTIC AMIKACIN ON NEUROMUSCULAR AND AUTONOMIC TRANSMISSION

Y. N. SINGH, I. G. MARSHALL AND A. L. HARVEY

Caso Clínico

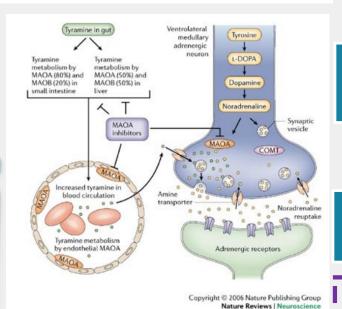
Menina de 5 anos, internada na UTI cardíaca estável hemodinamicamente em uso de medicamento vasoativo, começou apresentar febre, coletados culturas (Hemoculturas pareadas e Urocultura) e na parcial da hemocultura cresceu um Cocos Gram Positivo, como a paciente também estava com uma disfunção renal importante equipe optou por iniciar Linezolida 30mg/kg/dia 8/8h. Evoluindo clinicamente bem dos parâmetros infecciosos.

Em determinado momento a paciente começou apresentar picos hipertensivos, equipe investiga causa e não há justificativas do ponto de vista clínico.

O que poderia ser?

Técnica de enfermagem relata à farmácia clínica que tem observado os picos hipertensivos após alguns minutos da administração da Linezolida, e questiona se há possibilidade de ser uma reação adversa

Após a suspensão da Linezolida paciente não apresentou mais hipertensão


Alteração de Sinais Vitais

Network Open...

Original Investigation | Pharmacy and Clinical Pharmacology

Association of Linezolid With Risk of Serotonin Syndrome in Patients Receiving Antidepressants

Anthony D. Bai, MD; Susan McKenna, BScPhm; Heather Wise, BScPhM; Mark Loeb, MD, MSc; Sudeep S. Gill, MD, MSc

Linezolida Inibidora da MAO

Aumento dos níveis séricos de catecolaminas

Picos hipertensivos Cefaleia

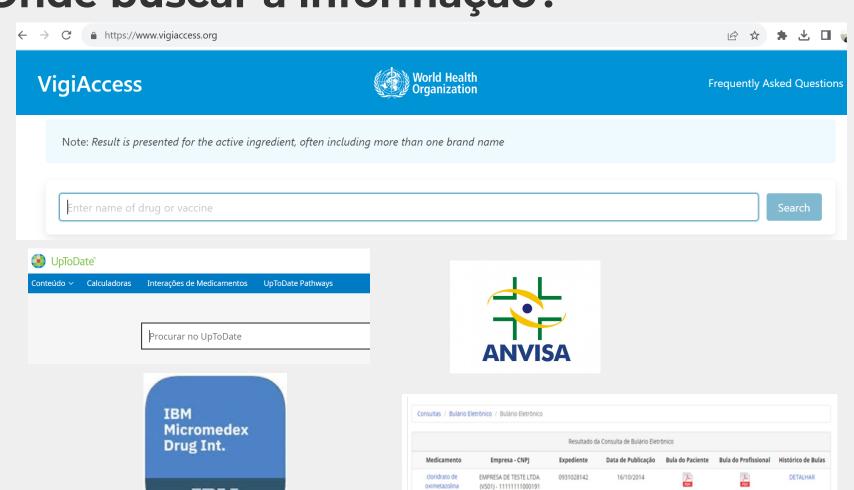
Drug fever induced by antibiotics of β-lactams in a patient after posterior cervical spine surgery—A case report and literature review

Yunxiang Hu^{1,2,31}, Jun Han^{1,21}, Lin Gao³¹, Sanmao Liu^{1,2} and Hong Wang^{1,2,4}

¹Department of Orthopedics, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, China, ²School of Graduates, Dalian Medical University. Dalian, China, ³Department of Spine Surgery. The People's Hospital of Liuyang City, Changsha, China

Correlação entre administração e alteração dos sinais vitais (via oral – absorção)

Excluído outras causas


Todos os Antibióticos podem estar associados com *Clostridium*

Clindamicina
Ampicilina e Amoxicilina
Cefalosporinas
Piperacilina+Tazobcatam
Meropenem
Fluorquinolonas

.

Onde buscar a informação?

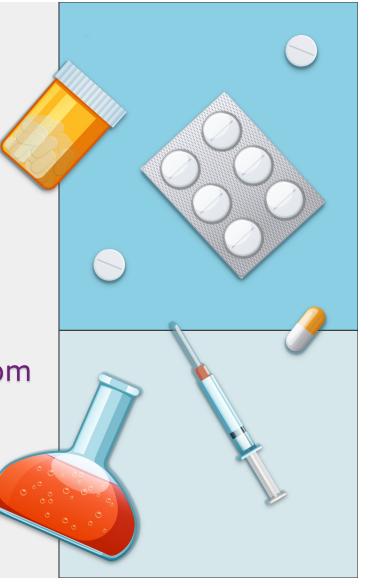
VigiAccess

Linezolid contains the active ingredient Linezolid
There are 28 051 reports with this active ingredient

Reported potential side effects

- > Blood and lymphatic system disorders (23%, 9611 ADRs)
- > Cardiac disorders (1%, 564 ADRs)
- > Congenital, familial and genetic disorders (0%, 33 ADRs)
- > Ear and labyrinth disorders (1%, 261 ADRs)
- > Endocrine disorders (0%, 63 ADRs)
- > Eye disorders (3%, 1094 ADRs)
- > Gastrointestinal disorders (9%, 3919 ADRs)
- > General disorders and administration site conditions (9%, 3908 ADRs)
- Hepatobiliary disorders (2%, 837 ADRs)
- > Immune system disorders (1%, 391 ADRs)
- > Infections and infestations (4%, 1556 ADRs)
- > Injury, poisoning and procedural complications (3%, 1135 ADRs)
- > Investigations (10%, 4120 ADRs)
- > Metabolism and nutrition disorders (4%, 1553 ADRs)
- > Musculoskeletal and connective tissue disorders (2%, 814 ADRs)
- > Neoplasms benign, malignant and unspecified (incl cysts and polyps) (0%, 89 ADRs)
- > Nervous system disorders (12%, 5020 ADRs)
- > Pregnancy, puerperium and perinatal conditions (0%, 21 ADRs)
- > Product issues (0%, 48 ADRs)
- > Psychiatric disorders (2%, 894 ADRs)
- Renal and urinary disorders (2%, 762 ADRs)
- > Reproductive system and breast disorders (0%, 55 ADRs)
- > Respiratory, thoracic and mediastinal disorders (2%, 979 ADRs)
- > Skin and subcutaneous tissue disorders (7%, 2927 ADRs)
- Social circumstances (0%, 35 ADRs)
- > Surgical and medical procedures (0%, 90 ADRs)
- > Vascular disorders (1%, 580 ADRs)

- Vascular disorders (1%, 580 ADRs)
 - Hypertension (144)
 - Hypotension (101)
 - Haemorrhage (56)
 - Flushing (43)
 - Pallor (33)
 - Shock (27)
 - Hot flush (17)
 - Circulatory collapse (16)
 - Thrombosis (14)
 - Phlebitis (12)
 - Deep vein thrombosis (11)
 - Haemodynamic instability (11)
 - Cyanosis (9)
 - Haematoma (8)
 - Vasculitis (8)
 - Hyperaemia (7)
 - Hypertensive crisis (7)
 - Peripheral coldness (7)
 - Orthostatic hypotension (6)


Obrigado!!

Yeo Jim Kinoshita Moon

yeojimoon@gmail.com

